Kommunikation auf Umwegen
Organische Halbleitermaterialien besitzen viele Vorteile: Sie können in großen Mengen preiswert synthetisiert werden, sie sind leicht zu verarbeiten, mechanisch flexibel und Ressourcen schonend. Ihr großflächiger Einsatz in technischen Anwendungen, wie beispielsweise in optoelektronischen Bauelementen, wird jedoch dadurch erschwert, dass sie den elektrischen Strom im Allgemeinen schlecht leiten.
Unter besonderen Randbedingungen kann die Leitung allerdings sehr viel besser sein. Warum das so sein kann, haben Physiker der Universität Würzburg gemeinsam mit Wissenschaftlern aus Graz und Hiroshima jetzt aufgeklärt. Die neueste Ausgabe der Fachzeitschrift Nature Communications berichtet über diese Arbeit.
Das Experiment
„Trägt man organische Moleküle auf eine metallische Oberfläche auf, so ist die direkte Bindung zwischen ihnen normalerweise relativ schwach“, erklärt Achim Schöll. „Stattdessen stehen die einzelnen Moleküle hauptsächlich mit ihrer Unterlage in Wechselwirkung.“ Schöll ist Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg und forscht schon seit vielen Jahren an Molekülen, die in der organischen Halbleiterelektronik eingesetzt werden könnten. In seinen jüngsten Experimenten konnte er zeigen, dass die Regel über die geringe gegenseitige Wechselwirkung nicht immer zutrifft.
Dazu haben die Physiker auf ein metallisches Trägermaterial im Ultrahochvakuum eine einzelne geordnete Schicht organischer Moleküle aufgebracht, die genau eine einzige Moleküllage dick ist. „Wir haben damit einen quasi-zweidimensionalen Halbleiter, in dem die Anordnung der Moleküle durch die Metallunterlage bestimmt wird“, beschreibt Schöll die Vorgehensweise. So angeordnet, zeigen die organischen Moleküle ein ganz ungewöhnliches Verhalten.
Die Ergebnisse
„Wir konnten nachweisen, dass die Elektronen der organischen Moleküle nun mit ihren Nachbarmolekülen in Kontakt treten – allerdings vermittelt über den metallischen Träger“, erklärt Schöll. Oder anders formuliert: Die Elektronenwolken benachbarter Moleküle bilden einen gemeinsamen Zustand aus, an dem auch das Metall beteiligt ist. Das erleichtert den Austausch von Ladungen und erhöht somit die Leitfähigkeit des organischen Materials. Die Tatsache, dass die Moleküle über den Umweg durch das Metall miteinander „kommunizieren“ sei das Spannende an den Ergebnissen, sagt Schöll.
In ihren Messungen stießen die Physiker auf ein weiteres Phänomen: „Die Stärke dieser Kommunikation ist stark richtungsabhängig“, sagt Schöll. Das heißt, während die zweidimensionale Molekülschicht Ladungen in einer Richtung vergleichsweise gut transportiert, läuft der Transport in anderen Richtungen deutlich schlechter. Ursache dafür ist der innere Aufbau der Moleküle und ihre Anordnung auf der metallischen Unterlage.
Hoher technischer Aufwand
Wie eine fingernagelgroße Metallscheibe sehen die Proben aus, mit denen die Würzburger Physiker arbeiten. Sie herzustellen und zu untersuchen ist allerdings mit einem großen technischen Aufwand verbunden. Um die Schichten in der geforderten Reinheit und Ordnung aufzubauen, ist beispielsweise ein extremes Vakuum – ein so genanntes Ultrahochvakuum – notwendig, in dem nur noch ganz vereinzelt Restgasatome vorhanden sind. Gerade einmal 10 -10 Millibar beträgt der Druck in einer solchen Vakuumkammer, was noch unter dem Druck im erdnahen Weltall liegt.
Hightech kommt auch zum Einsatz, um das Verhalten der Elektronen in der Probe zu verfolgen – winkelaufgelöste Photoelektronenspektroskopie heißt das entsprechende Verfahren. Ein Elektronen-Speicherring, also ein Teilchenbeschleuniger, der so genannte Synchrotronstrahlung erzeugt, dient dabei als UV-Strahlungsquelle, mit dessen Hilfe der Einblick in die Nanowelt gelingt.
Die nächsten Schritte
Grundlagenforschung im Bereich der Nanoanalytik sei diese Arbeit, sagt Schöll. Allerdings sei das Verständnis der komplexen Wechselwirkungen zwischen organischen Molekülen und dem metallischen Träger fundamental für zukünftige Anwendungen. Am Ende des Verständnisses sind die Forscher mit der Publikation in Nature Communications noch lange nicht angekommen. In weiteren Versuchen will Schöll jetzt untersuchen, welchen Einfluss eine Kombination verschiedener Moleküle, ein anderes Trägermaterial und eine andere Anordnung der Moleküle auf das Verhalten der Elektronen haben. Mit den Erkenntnissen aus diesen Experimenten ließen sich dann möglicherweise zweidimensionale Netzwerke mit bestimmten elektronischen Eigenschaften maßgeschneidert herstellen.
Substrate-mediated band-dispersion of adsorbate molecular states. M. Wießner, J. Ziroff, F. Forster, M. Arita, K. Shimada, P. Puschnig, A. Schöll & F. Reinert. Nature Communications, DOI: 10.1038/ncomms2522
Kontakt
PD Dr. Achim Schöll,
T: (0931) 31-85127,
achim.schoell@physik.uni-wuerzburg.de
Media Contact
Weitere Informationen:
http://www.uni-wuerzburg.deAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Freistehendes Plasma mit hoher Energiedichte
Die Idee der Kernfusion begeistert Physiker:innen und Energiefachleute seit Jahrzehnten. Im Kern geht es darum, die physikalisch-chemischen Prozesse, die in der Sonne stattfinden, in vergleichbarer Form auf der Erde zu…
Hochsensitive Quantensensorik für die Medizin
NV-Diamant-Lasersystem mit zwei Medien erstmals erfolgreich demonstriert. Die Messung winziger Magnetfelder, wie sie etwa durch Hirnströme erzeugt werden, eröffnet der medizinischen Diagnostik und Behandlung viele neue Möglichkeiten. Das Forschungsteam um…
Neue Einblicke in die Ammoniakspaltung
Ein internationales Forschungsteam hat neue Erkenntnisse in die Funktionsweise eines Eisenkatalysators gewonnen, mit dem sich Ammoniak in Stickstoff und Wasserstoff spalten lässt. Wasserstoff wird zu Ammoniak umgewandelt, um den Energieträger…