Die kleinste Lasershow der Welt – Das ultraschnelle Schalten nanooptischer Anregungen

Lasershow auf Nanometer-Skalen: Durch gezielte Manipulation ultrakurzer Laserpulse können unterschiedliche Bereiche einzelner Nanostrukturen auf Femtosekunden Zeitskalen (10-15 Sekunden) gezielt optisch angeregt werden. <br>Urheber: Walter Pfeiffer, Bielefeld<br>

Das im Wissenschaftsmagazin Proceedings of the National Academy of Sciences vorgestellte Experiment kombiniert Methoden der Ultrakurzpuls-Lasertechnologie und Nanostrukturtechnik, um optische Anregungen auf der Nanometerskala raum-zeitlich zu steuern und nachzuweisen.

Im Alltag ist direkt erfahrbar, dass die räumliche und zeitliche Verteilung von Licht die visuelle Wirkung bestimmt. In einer Lasershow entstehen zum Beispiel durch das schnelle Schalten und Ablenken von Laserstrahlen unerwartete und auf andere Weise nicht erreichbare Lichteindrücke. Schnelles raum-zeitliches Schalten von Licht ist aber nicht nur für ästhetische Lichteffekte relevant, sondern findet unter anderem in der Kommunikationstechnologie bei optischen Lichtwellenleitern oder in der Optoelektronik Anwendung.

Mit herkömmlichen optischen Methoden kann die räumliche Verteilung von Licht im sichtbaren Spektralbereich bis hinab zu etwa einem halben Mikrometer (1 µm = 0.000001 m = 1000 nm) gezielt manipuliert und gesteuert werden. Ein halber Mikrometer (500 nm) ist zwar schon etwa 100 mal kleiner als der Durchmesser eines menschlichen Haares, aber für zukünftigen Anwendungen ist die Manipulation auf noch kleineren Längenskalen notwendig.

Die Lichtmanipulation auf Bereichen von weniger als einem Zehntel eines Mikrometers (

Die grundlegende Idee des Experimentes besteht in der Kombination der Nahfeldoptik mit den Methoden der gezielten Formung von ultrakurzen Laserpulsen. Durch Manipulation des zeitlichen Verlaufs des anregenden Lichtimpulses wird in einer eigens für das Experiment entwickelten Nanoantenne eine sich räumlich und zeitlich entwickelnde Anregung erzeugt. Der zeitliche und räumliche Ablauf der optischen Anregung wird mittels einer stroboskopische Aufnahme durch ein Photoemissions-Elektronenmikroskop abgebildet und man erhält einen „Film“ der Anregung der Nanoantenne. Dieses äußerst komplexe Experiment erfordert ein breites Methodenspektrum und Fachwissen, das nur durch die Kooperation von mehreren Universitäten realisiert werden konnte. Die durchgeführten Messungen demonstrieren ein Schalten innerhalb von ca. 50 fs zwischen etwa 200 nm entfernten Bereichen der Nanostruktur. Das Licht in der Umgebung der Nanostruktur weist somit eine komplexe raum-zeitliche Entwicklung auf – oder in anderen Worten – es findet dort die kleinste und schnellste „Lasershow“ der Welt statt.

Ansprechpartner (in alphabetischer Reihenfolge):

Prof. Dr. Martin Aeschlimann, Technische Universität Kaiserslautern,
Tel. 0631/205-2322, ma@physik.uni-kl.de;
Prof. Dr. Michael Bauer, Universität Kiel,
Tel. 0431/880-5098, bauer@physik.uni-kiel.de;

Prof. Dr. Tobias Brixner, Universität Würzburg,
Tel.: 0931/31-86330 brixner@phys-chemie.uni-wuerzburg.de;
Prof. Dr. Walter Pfeiffer, Universität Bielefeld,
Tel.: 0521/106-5470 pfeiffer@physik.uni-bielefeld.de

Media Contact

Thomas Jung TU Kaiserslautern

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer