KATRIN-Experiment begrenzt die Masse von Neutrinos auf unter 1 Elektronenvolt

Überblick über das 70 m lange KATRIN Experiment mit den Hauptkomponenten a) Fensterlose gasförmige Tritiumquelle, b) Pumpsektion und c) Elektrostatische Spektrometer und Fokalebenendetektor.

Neben den Photonen, den masselosen elementaren Quanten des Lichts, sind Neutrinos die häufigsten Teilchen im Universum. Neutrinos werden „Geisterteilchen“ genannt, denn sie sind weder zu sehen noch zu spüren und extrem schwer nachweisbar.

Durch die Beobachtung der Neutrino-Oszillation vor rund 20 Jahren konnte gezeigt werden, dass Neutrinos – entgegen früheren Erwartungen – eine sehr kleine, von Null verschiedene Masse besitzen. Damit spielen die „Leichtgewichte im Universum“ eine wichtige Schlüsselrolle bei der Bildung von großräumigen Strukturen im Kosmos wie auch in der Welt der Elementarteilchen auf den aller kleinsten Skalen, wo ihre extrem kleine Masse auf neue Physik jenseits bekannter Modelle hindeutet. Die weltweit genaueste Waage, das internationale KATRIN Experiment am Karlsruher Institut für Technologie (KIT), soll in den nächsten Jahren die Masse der faszinierenden Neutrinos mit bisher unerreichter Genauigkeit bestimmen. Die Wissenschaftlerinnen und Wissenschaftler erhoffen sich davon unter anderem ein besseres Verständnis von der Entwicklung des Universums.

Die KATRIN Kollaboration, an der 20 Institutionen aus sieben Ländern beteiligt sind, konnte in den letzten Jahren zahlreiche technologische Herausforderungen bei der Inbetriebnahme des 70 Meter langen Experimentaufbaus erfolgreich meistern.

Im Frühjahr dieses Jahres war es dann endlich so weit: Das 150-köpfige Team konnte Neutrinos das erste Mal auf die supergenaue Waagschale von KATRIN legen. Dazu wurde über mehrere Wochen hochreines Tritiumgas zirkuliert und die ersten hochgenauen Energiespektren von Elektronen aus dem Tritiumzerfall wurden mit dem Spektrometer aufgenommen, welches die Dimensionen eines Einfamilienhauses hat und dessen Bilder von der Anlieferung im Jahr 2006 um die Welt gingen.

Das internationale Analyseteam machte sich schließlich an die umfangreiche Arbeit, um aus den aufgenommenen Daten das erste Resultat für die Neutrino-Masse abzuleiten. Herausgekommen ist die absolute Massenskala der Neutrinos mit einem Wert von weniger als 1 Elektronenvolt (eV) mit einer Wahrscheinlichkeit von 90 Prozent. Damit muss die Masse des Neutrinos mindestens 500.000-mal kleiner sein als die des Elektrons. Prof. Dr. Klaus Helbing, Projektleiter auf Wuppertaler Seite, kommentiert dieses erste Ergebnis mit großer Freude: „Dass KATRIN nach einer Messkampagne von nur wenigen Wochen nun bereits die weltbeste Sensitivität für die Neutrino-Masse besitzt und die mehrjährigen Messungen der Vorgängerexperimente um einen Faktor 2 verbessert, zeigt das außerordentlich hohe Potenzial unseres Projekts.“

Die Wissenschaftler der Bergischen Universität liefern dabei Kalibrationsinstrumente, die im hochreinen Vakuum des Experiments kleinste Unstimmigkeiten im Betrieb der Apparaturen aufspüren. „Mit der weltbesten Obergrenze für die Masse des Neutrinos hat KATRIN den ersten Schritt bei der Erforschung der Eigenschaften von Neutrinos getan, viele weitere werden in den kommenden Jahren folgen“, erläutert Dr. Ellinger, der den Wuppertaler Beitrag zum Experiment maßgeblich konzipiert hat. Die Wuppertaler Forscher freuen sich auf eine weitere deutliche Verbesserung der Sensitivität bei der Messung der Neutrino-Masse und die Suche nach neuen physikalischen Phänomenen jenseits bisheriger physikalischer Modelle.

Die Bergische Universität Wuppertal wird bei dieser Forschung seit vielen Jahren durch das Bundesministerium für Bildung und Forschung gefördert.

Prof. Dr. Klaus Helbing
Telefon 0202/439-2829
E-Mail helbing@uni-wuppertal.de

https://physics.aps.org/articles/v12/129
http://www.katrin.kit.edu

Media Contact

Denise Haberger idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Erfolg für Magdeburger Wissenschaftler*innen mit einem „Brutkasten“ für die Lunge

Forschungspreis der Deutschen Gesellschaft für Thoraxchirurgie 2020 geht an Chirurg*innen der Universitätsmedizin Magdeburg Die Arbeitsgruppe „Experimentelle Thoraxchirurgie“ der Universitätsmedizin Magdeburg unter der Leitung von Dr. Cornelia Wiese-Rischke wurde für die…

Mehr als Muskelschwund

Forschungsnetzwerk SMABEYOND untersucht Auswirkungen der Spinalen Muskelatrophie auf Organe Spinale Muskelatrophie (SMA) ist eine erblich bedingte neurodegenerative Erkrankung. Dabei gehen die motorischen Nervenzellen im Rückenmark und im Hirnstamm allmählich zugrunde,…

Molekulare Bremse für das Wurzelwachstum

Die dynamische Änderung des Wurzelwachstums von Pflanzen ist wichtig für ihre Anpassung an Bodenbedingungen. Nährstoffe oder Feuchtigkeit können je nach Standort in höheren oder tieferen Bodenschichten vorkommen. Daher ist je…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close