Hologramme aus dem Nanokosmos

Aber nicht diese Eigenschaft der Holografie steht im Mittelpunkt, wenn es um die Abbildung kleinster Strukturen geht, sondern die Tatsache, dass für die Aufzeichnung eines Hologramms keinerlei Linsen benötigt werden.

Für die Untersuchung nanometergroßer Strukturen wird Licht mit mindestens ebenso kleiner Wellenlänge benötigt (weiche Röntgenstrahlung). Die einzigen Linsen die in diesem Wellenlängenbereich funktionieren (sog. Fresnel-Zonenplatten) sind sehr aufwändig herzustellen und liefern trotzdem eine um eine Größenordnung schlechtere Abbildungsqualität als Linsen für sichtbares Licht.

Die Vorgehensweise bei der linsenlosen Aufzeichnung eines Hologramms besteht darin, die Lichtwelle – nachdem sie das Objekt durchstrahlt hat – bei der Aufzeichnung mit einer Referenzwelle bekannter und dazu stabiler (kohärenter) Phase zu überlagern (Interferenz). Als Referenzwelle dient eine Kugelwelle, die von einem wenige Nanometer großen Loch direkt neben dem Objekt ausgeht.

Kohärente Röntgenstrahlen stehen an modernen Synchrotron-Quellen oder an den neuen Freie-Elektronen-Lasern wie dem Hamburger FLASH mit größter Helligkeit zur Verfügung, so dass seit einigen Jahren Verfahren zur holografischen Abbildung von Nanostrukturen erprobt werden.

Eine Arbeitsgruppe des Sonderforschungsbereichs 688 in Zusammenarbeit mit Wissenschaftlern vom DESY in Hamburg und der ESRF in Grenoble hat kürzlich das erste voll funktionsfähige Mikroskop für die Holografie von Nanostrukturen vorgestellt. Dabei erlaubt der neuartige Aufbau aus zwei direkt hintereinander angeordneten und präzise gegeneinander verschiebbaren Siliziumnitrid-Membranen eine beliebige Stelle des zu untersuchenden Objekts gezielt anzufahren und abzubilden, was mit den bisher bekannten Verfahren nicht möglich war.

Der Trick besteht darin, die optisch wirksamen Komponenten – das sind ein Mikrometer großes Loch für die Wahl des Bildausschnitts und das kleine Loch für die Erzeugung der Referenzwelle – aus einer eigenen, undurchlässigen Membran herzustellen. Das Objekt wird dagegen auf einer zweiten, durchlässigen Membran präpariert, die separat gewechselt werden kann.

Die Hologramme der einzelnen Bildausschnitte eines ausgedehnten Objekts werden in einem sehr einfachen Verfahren (FFT) am Computer rekonstruiert und die Bilder anschließend zusammengesetzt. Weiche Röntgenstrahlung bietet die Möglichkeit der selektiven Abbildung einzelner chemischer Elemente oder auch deren lokaler Magnetisierung, was sich je nach Fragestellung gezielt ausnutzen lässt. Die Zeitstruktur der Röntgenpulse verspricht darüber hinaus Information hin zu der Pikosekunden-Skala. Gegenwärtig wird an einer Verbesserung der Ortsauflösung auf 10 nm gearbeitet.

Die Fachzeitschrift „Applied Physics Letters“ bewertete die Technik der „Röntgen-Holografischen Mikroskopie“ (XHM) als so vielversprechend, dass sie der Veröffentlichung ein eigenes Titelblatt widmete.

D. Stickler, R. Frömter, H. Stillrich, C. Menk, C. Tieg, S. Streit-Nierobisch, M. Sprung, C. Gutt, L.-M. Stadler, O. Leupold, G. Grübel, and H. P. Oepen,

„Soft x-ray holographic microscopy“, Appl. Phys. Lett. 96, 042501 (2010), doi:10.1063/1.3291942.

Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Institut für Angewandte Physik
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 – 69 59
Fax: (0 40) 4 28 38 – 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Ansprechpartner für Medien

Heiko Fuchs idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Niedertemperaturplasmen: Die maßgeschneiderte Welle

Plasmen werden in der Industrie zum Beispiel eingesetzt, um Oberflächen gezielt zu verändern, etwa Brillengläser oder Displays zu beschichten oder mikroskopische Kanäle in Siliziumwafer zu ätzen – eine Milliarden-Dollar-Industrie. Allerdings…

Innovationen durch haarfeine optische Fasern

Wissenschaftler der Universität Bonn haben auf ganz einfache Weise haarfeine, optische Faser-Filter gebaut. Sie sind nicht nur extrem kompakt und stabil, sondern auch noch in der Farbe abstimmbar. Damit lassen…

So schlank werden die Häuser der Zukunft

Ingenieurinnen und Ingenieure der HTWK Leipzig erforschen neue Materialien, um Gebäude nachhaltiger zu machen und Ressourcen zu sparen In der Einsteinstraße in Dresden entsteht aktuell ein Haus, das einen Einblick…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen