Holografie mit Elektronen

Experimentelle Messung von Elektronen, die von dem 7 Mikrometer FELICE Laser aus Xenonatomen ionisiert wurden. Das Bild zeigt die Geschwindigkeitsverteilung entlang der (horizontal) und senkrecht zur (vertikal) Polarisationsrichtung. Abb.: MBI<br>

urchgesetzt hat sich die Holografie aber erstmals in den 60er Jahren mit der Erfindung des Lasers – sie funktioniert also auch mit Licht. Physiker vom Max-Born-Institut (MBI) in Berlin sind jetzt quasi wieder zu den Anfängen zurück gekehrt, indem sie Holografie mit Elektronen betreiben.

Das besondere an ihrer Methode: Die Elektronen, welche das Objekt aufzeichnen, werden zuvor mit einem Laser aus diesem heraus geschossen, stammen also vom Objekt selbst. Die Wissenschaftler berichten darüber in der Onlineausgabe von Science.

Die Holografie, so wie sie den meisten bekannt ist, benötigt kohärentes Licht – also Lichtwellen, die in völligem Gleichklang schwingen. Das Licht wird in zwei Strahlen geteilt, die Referenzwelle und die Objektwelle. Die Referenzwelle fällt direkt auf einen zweidimensionalen Detektor, zum Beispiel eine Fotoplatte. Die Objektwelle beleuchtet ein Objekt und wird an diesem gestreut, dann fällt auch sie auf den Detektor. Dabei überlagern sich die beiden Lichtwellen und es entsteht ein Interferenzmuster, das über die dreidimensionale Form des Objektes Auskunft gibt.

Was Gábor nicht konnte, nämlich eine Quelle für kohärente Elektronenstahlen konstruieren, ist bei Physikern, die mit starken Laserfeldern experimentieren, schon fast Standard. Sie schießen mit ultrastarken, ultrakurzen Laserpulsen Elektronen aus Atomen und Molekülen heraus, dies nennt man Ionisierung. Solche Elektronen sind kohärent und bildeten deshalb die Basis für das neue Holografie-Experiment mit Xenonatomen. Marc Vrakking vom MBI beschreibt, was bei der Ionisierung grundsätzlich passiert: „Durch das starke Laserfeld werden die Elektronen vom Atom weggerissen. Weil das Laserfeld schwingt, schnipsen einige von ihnen wie von einem Gummiband gehalten wieder zurück. Sie bewegen sich also in Richtung Atom und damit haben wir eine perfekte Elektronenquelle.“

Die herausgeschossenen Elektronen haben nun verschiedene Möglichkeiten: Manche vereinigen sich wieder mit dem Atom und erzeugen dabei extrem ultra-violettes (XUV) Licht, das die Basis für die heutige Attosekundenphysik ist, eines der neuen Hauptthemen am MBI. Die meisten Elektronen fliegen aber am Atom vorbei und bilden in den Holografie-Experimenten die Referenzwelle. Die Elektronen, welche vom Atom gestreut werden, bilden die Objektwelle. Die Wissenschaftler fingen die Elektronen mit einem Detektor auf und konnten ein charakteristisches Interferenzmuster beobachten, das den dreidimensionalen Zustand des Xenonatoms wiedergibt.

Dabei dem waren im Experiment bestimmte Bedingungen nötig: Um ein klares holografisches Bild zu erhalten, durfte die Referenzwelle nicht von dem positiv geladenen Objekt, also dem Xenonion, beeinflusst werden. Die Elektronenquelle sollte sich deshalb möglichst weit entfernt vom Objekt befinden. Aus diesem Grund führten die Forscher die Experimente mit dem Freie-Elektronenlaser FELICE (Free Electron Laser for Intracavity Experiments) durch, der langwelliges Licht im Bereich von 4 bis 40 Mikrometer aussendet. Solche Wellen „entführen“ die Elektronen besonders weit vom Atom weg, bevor sie sie wieder zurückbringen.

Die Elektronen werden bei der Ionisation mit minimalen Verzögerungen produziert, diese liegen unter einer Femtosekunde. Die Forscher konnten so über theoretische Berechnungen zeigen, dass sie zeitaufgelöste holografische Bilder erhalten hatten. Ein exaktes dreidimensionales Bild des Xenonatoms können sich die Wissenschaftler aus den Interferenzmustern zwar noch nicht konstruieren, aber Vrakking hält so etwas in Zukunft durchaus für möglich. „Wir haben erstmalig gezeigt, dass Holografie auf atomaren Größenskalen und zeitaufgelöst mit dieser Methode möglich ist“, sagt er. Dies eröffne neu Möglichkeiten für die zeitaufgelöste Beobachtung von Molekülen.

Die Arbeiten erfolgten in Zusammenarbeit mit Forschern aus den FOM Instituten AMOLF und Rijnhuizen, Niederlande.

DOI:10.1126/science.1198450

Kontakt:
Prof. Marc Vrakking, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030-6392 1200, Mobil: 0151-57153446, E-Mail: marc.vrakking@mbi-berlin.de , vrakking@amolf.nl

Media Contact

Christine Vollgraf Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neutronen-basierte Methode hilft, Unterwasserpipelines offen zu halten

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige…

Dresdner Forscher:innen wollen PCR-Schnelltests für COVID-19 entwickeln

Noch in diesem Jahr einen PCR-Schnelltest für COVID-19 und andere Erreger zu entwickeln – das ist das Ziel einer neuen Nachwuchsforschungsgruppe an der TU Dresden. Der neuartige Test soll die…

Klimawandel und Waldbrände könnten Ozonloch vergrößern

Rauch aus Waldbränden könnte den Ozonabbau in den oberen Schichten der Atmosphäre verstärken und so das Ozonloch über der Arktis zusätzlich vergrößern. Das geht aus Daten der internationalen MOSAiC-Expedition hervor,…

Partner & Förderer