Holografie mit Elektronen
urchgesetzt hat sich die Holografie aber erstmals in den 60er Jahren mit der Erfindung des Lasers – sie funktioniert also auch mit Licht. Physiker vom Max-Born-Institut (MBI) in Berlin sind jetzt quasi wieder zu den Anfängen zurück gekehrt, indem sie Holografie mit Elektronen betreiben.
Das besondere an ihrer Methode: Die Elektronen, welche das Objekt aufzeichnen, werden zuvor mit einem Laser aus diesem heraus geschossen, stammen also vom Objekt selbst. Die Wissenschaftler berichten darüber in der Onlineausgabe von Science.
Die Holografie, so wie sie den meisten bekannt ist, benötigt kohärentes Licht – also Lichtwellen, die in völligem Gleichklang schwingen. Das Licht wird in zwei Strahlen geteilt, die Referenzwelle und die Objektwelle. Die Referenzwelle fällt direkt auf einen zweidimensionalen Detektor, zum Beispiel eine Fotoplatte. Die Objektwelle beleuchtet ein Objekt und wird an diesem gestreut, dann fällt auch sie auf den Detektor. Dabei überlagern sich die beiden Lichtwellen und es entsteht ein Interferenzmuster, das über die dreidimensionale Form des Objektes Auskunft gibt.
Was Gábor nicht konnte, nämlich eine Quelle für kohärente Elektronenstahlen konstruieren, ist bei Physikern, die mit starken Laserfeldern experimentieren, schon fast Standard. Sie schießen mit ultrastarken, ultrakurzen Laserpulsen Elektronen aus Atomen und Molekülen heraus, dies nennt man Ionisierung. Solche Elektronen sind kohärent und bildeten deshalb die Basis für das neue Holografie-Experiment mit Xenonatomen. Marc Vrakking vom MBI beschreibt, was bei der Ionisierung grundsätzlich passiert: „Durch das starke Laserfeld werden die Elektronen vom Atom weggerissen. Weil das Laserfeld schwingt, schnipsen einige von ihnen wie von einem Gummiband gehalten wieder zurück. Sie bewegen sich also in Richtung Atom und damit haben wir eine perfekte Elektronenquelle.“
Die herausgeschossenen Elektronen haben nun verschiedene Möglichkeiten: Manche vereinigen sich wieder mit dem Atom und erzeugen dabei extrem ultra-violettes (XUV) Licht, das die Basis für die heutige Attosekundenphysik ist, eines der neuen Hauptthemen am MBI. Die meisten Elektronen fliegen aber am Atom vorbei und bilden in den Holografie-Experimenten die Referenzwelle. Die Elektronen, welche vom Atom gestreut werden, bilden die Objektwelle. Die Wissenschaftler fingen die Elektronen mit einem Detektor auf und konnten ein charakteristisches Interferenzmuster beobachten, das den dreidimensionalen Zustand des Xenonatoms wiedergibt.
Dabei dem waren im Experiment bestimmte Bedingungen nötig: Um ein klares holografisches Bild zu erhalten, durfte die Referenzwelle nicht von dem positiv geladenen Objekt, also dem Xenonion, beeinflusst werden. Die Elektronenquelle sollte sich deshalb möglichst weit entfernt vom Objekt befinden. Aus diesem Grund führten die Forscher die Experimente mit dem Freie-Elektronenlaser FELICE (Free Electron Laser for Intracavity Experiments) durch, der langwelliges Licht im Bereich von 4 bis 40 Mikrometer aussendet. Solche Wellen „entführen“ die Elektronen besonders weit vom Atom weg, bevor sie sie wieder zurückbringen.
Die Elektronen werden bei der Ionisation mit minimalen Verzögerungen produziert, diese liegen unter einer Femtosekunde. Die Forscher konnten so über theoretische Berechnungen zeigen, dass sie zeitaufgelöste holografische Bilder erhalten hatten. Ein exaktes dreidimensionales Bild des Xenonatoms können sich die Wissenschaftler aus den Interferenzmustern zwar noch nicht konstruieren, aber Vrakking hält so etwas in Zukunft durchaus für möglich. „Wir haben erstmalig gezeigt, dass Holografie auf atomaren Größenskalen und zeitaufgelöst mit dieser Methode möglich ist“, sagt er. Dies eröffne neu Möglichkeiten für die zeitaufgelöste Beobachtung von Molekülen.
Die Arbeiten erfolgten in Zusammenarbeit mit Forschern aus den FOM Instituten AMOLF und Rijnhuizen, Niederlande.
DOI:10.1126/science.1198450
Kontakt:
Prof. Marc Vrakking, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030-6392 1200, Mobil: 0151-57153446, E-Mail: marc.vrakking@mbi-berlin.de , vrakking@amolf.nl
Media Contact
Weitere Informationen:
http://www.fv-berlin.deAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Thermodynamisch inspirierte Laserstrahlsformung entfacht einen Hoffnungsschimmer
Inspiriert von Ideen aus der Thermodynamik haben Forscher der Universität Rostock und der University of Southern California eine neue Methode entwickelt, um hochenergetische Laserstrahlen effizient zu formen und zu kombinieren….
Ein Atem frischer Luft: Fortschrittliche Quantenberechnungen ermöglichen COF-999 CO₂-Adsorption
Quantenchemische Berechnungen an der HU ermöglichen die Entwicklung neuer poröser Materialien, die durch eine hohe Absorptionskapazität für CO₂ gekennzeichnet sind. Klimaforscher sind sich einig: Um die Klimakrise zu überwinden, müssen…
Warum globale Dürren, die mit dem Klimawandel verbunden sind, uns beeinträchtigen
Eine von der Eidgenössischen Forschungsanstalt WSL (Schweizerisches Bundesinstitut für Wald, Schnee und Landschaft) geleitete Studie zeigt, dass die Anzahl der langanhaltenden Dürren in den letzten 40 Jahren besorgniserregend zugenommen hat….