Heißes Gas füttert die Spiralarme der Milchstraße

Ausschnitt der THOR-Durchmusterung in der Nähe des Sagittariusarms der Milchstraße. Bild: J. Stil/University of Calgary/MPIA

Die Milchstraße ist eine Spiralgalaxie, eine scheibenförmige Sterneninsel im Kosmos, in der sich die meisten hellen und jungen Sterne in Spiralarmen anhäufen.

Dort entstehen sie aus dem dichten Interstellaren Medium (ISM), das aus Gas (insbesondere Wasserstoff) und Staub (mikroskopische Körper mit hohen Anteilen an Kohlenstoff und Silizium) besteht und sich auf Bildern als dunkles Band vor dem Sternenhintergrund abhebt.

Damit stetig neue Sterne entstehen können, muss laufend Material in die Spiralarme gespült werden, welches den Vorrat an Gas und Staub wieder auffüllt.

Eine Gruppe von Astronomen der Universität Calgary in Kanada, des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg und anderen Forschungseinrichtungen konnte nun zeigen, dass der Nachschub von einer deutlich heißeren Komponente des ISM stammt, die gewöhnlich die gesamte Milchstraße einhüllt.

Dieses Warme Ionisierte Medium (WIM) hat eine mittlere Temperatur von 10,000 Grad. Energiereiche Strahlung von heißen Sternen führt dazu, dass das Wasserstoffgas des WIM größtenteils ionisiert ist.

Die Ergebnisse lassen darauf schließen, dass das WIM sich in einem schmalen Bereich nahe eines Spiralarms verdichtet und allmählich unter Abkühlung hineinfließt.

Dem dichten WIM auf die Spur gekommen sind die Wissenschaftler durch die Vermessung der sogenannten Faradayrotation, einem Effekt, der nach dem englischen Physiker Michael Faraday benannt ist. Dabei ändert sich die Polarisationsrichtung von linear polarisierter Radiostrahlung, wenn sie durch ein Plasma (ionisiertes Gas) läuft, das von einem Magnetfeld durchzogen ist.

Man spricht von polarisierter Strahlung, wenn das elektrische Feld nur in einer Ebene schwingt. Gewöhnliches Licht ist nicht polarisiert. Das Ausmaß der Richtungsänderung der Polarisation hängt zudem von der beobachteten Wellenlänge ab.

In der vorliegenden Studie, die kürzlich in der Fachzeitschrift The Astrophysical Journal Letters veröffentlicht wurde, konnten die Astronomen ein ungewöhnlich starkes Signal in einem eher unscheinbaren Bereich der Milchstraße ermitteln, der sich unmittelbar an der Seite des Sagittariusarms der Milchstraße anschmiegt, die dem Galaktischen Zentrum zugewandt ist.

Der Spiralarm selber sticht in den Bilddaten durch starke Radiostrahlung heraus, die von eingebetteten heißen Sternen und Supernovaüberreste erzeugt wird. Die stärkste Verschiebung der Polarisation findet sich jedoch außerhalb dieser markanten Zone.

Daraus folgern die Astronomen, dass die erhöhte Faradayrotation nicht innerhalb dieses aktiven Teils des Spiralarms entspringt. Demnach stammt es von verdichtetem WIM, welches wie das Magnetfeld zu einer weniger offensichtlichen Komponente des Spiralarms gehört.

Die Analyse basiert auf der THOR-Durchmusterung (The HI/OH Recombination Line Survey of the Milky Way), die seit einigen Jahren am MPIA erstellt und in der ein großer Bereich der Milchstraße bei mehreren Radiowellenlängen beobachtet wird.

Polarisierte Strahlungsquellen wie weit entfernte Quasare oder Neutronensterne dienen als „Sonden“ zur Bestimmung der Faradayrotation. Somit können die Astronomen nicht nur die ansonsten schwierig zu vermessenden Magnetfelder in der Milchstraße ausfindig machen, sondern die Struktur und Eigenschaften des heißen Gases ergründen.

„Das starke Signal in einem eher unauffälligen Bereich der Milchstraße hat uns sehr überrascht“, sagt Henrik Beuther vom MPIA, der das THOR-Projekt leitet. „Diese Ergebnisse zeigen uns, dass es bei der Erforschung der Struktur und der Dynamik der Milchstraße immer noch viel zu entdecken gibt.“

Kollaboration

Diese Studie wurde ermöglicht durch eine Kooperation der folgenden Forschungseinrichtungen:

Department of Physics and Astronomy, The University of Calgary, Kanada; Max-Planck-Institut für Astronomie, Heidelberg, Deutschland; Department of Physics and Astronomy, West Virginia University, USA; Green Bank Observatory, USA; Center for Gravitational Waves and Cosmology, West Virginia University, USA; Argelander-Institut für Astronomie, Universität Bonn, Deutschland; Zentrum für Astronomie, Universität Heidelberg, Deutschland; Jet Propulsion Laboratory, California Institute of Technology, USA; Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Deutschland; Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australien; Max-Planck-Institut für Radioastronomie, Bonn, Deutschland; Jodrell Bank Centre for Astrophysics, The University of Manchester, Großbritannien

Medienkontakt

Dr. Markus Nielbock
Max-Planck-Institut für Astronomie
Presse- und Öffentlichkeitsarbeit
Telefon:+49 6221 528-134
E-Mail: [email protected]

Prof. Dr. Henrik Beuther
Max-Planck-Institut für Astronomie
Telefon:+49 6221 528-447
E-Mail: [email protected]

R. Shanahan et al.
„Strong excess Faraday rotation on the Inside of the Sagittarius spiral arm“
The Astrophysical Journal Letters, 887, L7 (2019)
DOI: 10.3847/2041-8213/ab58d4

Ansprechpartner für Medien

Dr. Markus Nielbock Max-Planck-Institut für Astronomie

Weitere Informationen:

http://www.mpia.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Besser kleben im Leichtbau

Projekt GOHybrid optimiert Hybridverbindungen Leichtbau ist in der Mobilitätsbranche essentiell. Im Zuge der Mischbauweise mit Leichtmetallen und Faser-Kunststoff-Verbunden rücken hybride Klebverbindungen in den Fokus. Aufgrund der unterschiedlichen Wärmeausdehnungen der Materialien…

Benchmark für Einzelelektronenschaltkreise

Neues Analyseverfahren für eine abstrakte und universelle Beschreibung der Genauigkeit von Quantenschaltkreisen (Gemeinsame Presseinformation mit der Universität Lettland) Die Manipulation einzelner Elektronen mit dem Ziel, Quanteneffekte nutzbar zu machen, verspricht…

Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade

Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid…

Partner & Förderer