Handlicher XUV-Laser macht Teilchenbeschleunigern Konkurrenz

Physik-Doktorand Robert Klas von der Uni Jena. Er und seine Kollegen stellen in einer aktuellen Publikation einen Versuchsaufbau vor, mit dem sich ultrakurze Röntgenpulse erzeugen lassen. Foto: Jan-Peter Kasper/FSU

Was passiert im Inneren von Atomen und Molekülen, wenn sie eine chemische Bindung eingehen? Wie sieht es aus, wenn Licht mit optischen Nanomaterialien interagiert? Wollen Forscher chemische Reaktionen in Echtzeit verfolgen oder die Bewegung von Ladungsträgern beobachten, nutzen sie heute intensive Extrem-Ultraviolette (XUV) Strahlung. Doch die stammt nicht aus einer gewöhnlichen Gasentladungslampe.

„Für solche Anwendungen braucht es kohärentes, extrem kurz gepulstes XUV-Licht“, betont Prof. Dr. Jens Limpert von der Friedrich-Schiller-Universität Jena. Erzeugt werden solche XUV-Pulse zumeist in riesigen Teilchenbeschleunigern, etwa dem XFEL in Hamburg, dessen 3,4 Kilometer lange unterirdische Anlage gerade erst in Betrieb genommen wurde oder in Ringbeschleunigern, sogenannten Synchrotrons, mit mehreren hundert Metern Durchmesser.

Doch der Zugang für Forscher zu diesen leistungsstarken Großanlagen ist begrenzt und nicht alle wissenschaftlichen Fragestellungen lassen sich damit hinreichend untersuchen, was die Entwicklung von vergleichsweise „handlichen“ Lasersystemen motiviert. In der aktuellen Ausgabe des Fachmagazins „Optica“ stellen Jenaer Physiker einen Versuchsaufbau vor, mit dem sich ultrakurze, intensive XUV-Pulse in praktisch jedem Optik-Labor produzieren lassen (DOI: 10.1364/OPTICA.3.001167).

Diese Publikation zeigt, wie sich XUV-Pulse mit deutlich höherer Effizienz erzeugen lassen, als das bislang mit Systemen dieser Größenordnung möglich war. Dazu werden Laserpulse in einen doppelbrechenden Kristall fokussiert, wobei die Frequenz des ursprünglich infraroten Lichts verdoppelt wird. Das Ergebnis sind Laserpulse im grünen Wellenlängenbereich. Diese werden in einem zweiten Schritt der sogenannten kaskadierten Frequenzkonversion erneut fokussiert, woraus noch höherfrequente Pulse im XUV resultieren.

Auf diese Weise entstehen spektral schmalbandige und kohärente XUV-Pulse mit einer Leistung im Milliwatt-Bereich. Ihre Wellenlänge beträgt nur noch 57 Nanometer. „Übliche Systeme kommen lediglich auf ein Hundertstel dieser Leistung, während unsere Faserlaser basierten Systeme typischerweise ca. 100 µW Durchschnittsleistung liefern – diese neuartige Methode ist nun nochmals eine Größenordnung besser“, betont Doktorand Robert Klas, der die neuartige Quelle gemeinsam mit seinen Kollegen im Labor realisiert hat.

Dank dieser Technik seien die XUV-Quellen nun auch für praktische Anwendungen einsetzbar, welche in der Helmholtz-Nachwuchsgruppe von Dr. Jan Rothhardt verfolgt werden – etwa für neue bildgebende Verfahren um dreidimensionale Strukturen mit einer Auflösung von wenigen 10 Nanometern sichtbar zu machen und so völlig neue Einblicke in die Nanowelt zu ermöglichen.

Original-Publikation:
R. Klas et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source, Optica 3, 1167-1170 (2016), DOI: 10.1364/OPTICA.3.001167

Kontakt:
Prof. Dr. Jens Limpert
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße, 07745 Jena
Tel.: 03641 / 947643, 03641 / 947811
E-Mail: jens.limpert[at]uni-jena.de

Dr. Jan Rothhardt
Helmholtz-Institut Jena
Fröbelstieg 3, 07743 Jena
Tel.: 03641 / 947818
E-Mail: j.rothhardt[at]gsi.de

http://www.uni-jena.de

Media Contact

Dr. Ute Schönfelder idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer