Den Goldenen Schnitt gibt es auch in der Quantenwelt

Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit britischen Kollegen (aus Oxford, den Bristol Universities und dem Rutherford Appleton Laboratory) verborgene Symmetrieeigenschaften erstmals in fester Materie entdeckt.

Die Kennzeichen, die den aus Kunst und Architektur bekannten Goldenen Schnitt ausmachen, haben die Forscher im atomaren Aufbau eines Kristalls aus Kobalt-Niobat gefunden. Das Forscherteam veröffentlicht die Ergebnisse in der aktuellen Ausgabe der Zeitschrift Science vom 8. Januar.

Kobalt-Niobat ist ein magnetisches Material mit besonderen Eigenschaften. Es wird vor allem verwendet, um Quanteneigenschaften zu untersuchen. Seit Heisenberg seine „Unschärfe-Theorie“ aufgestellt hat, ist nämlich bekannt, dass sich Teilchen auf atomarer Ebene nicht so verhalten wie wir es in der Makrowelt gewöhnt sind. In der Quantenwelt zeigen sie völlig neue Eigenschaften.

Um diese zu untersuchen, ist Kobalt-Niobat geeignet. Die atomaren Bestandteile, aus denen der Kristall besteht, haben magnetische Eigenschaften und sind auf besondere Weise angeordnet. Die im Elektron vorhandenen Spins (Eigendrehimpuls) ordnen sich zu Ketten, die zusammen wie ein dünner Stabmagnet wirken. Jedoch ist die Kette nur eine Atomlage dick. Sie dient daher als besonders geeignetes Modell, um den Ferromagnetismus in Feststoffen zu untersuchen.

Lässt man ein magnetisches Feld im rechten Winkel zu der ausgerichteten Spin-Kette einwirken, geht die Kette in einen neuen Zustand über. Diesen Zustand stellen sich Physiker als fraktales Muster vor und nennen ihn „quantenkritisch“. Fraktale Muster sind dabei geometrische Gebilde, die aus verkleinerten Kopien ihrer selbst bestehen. Prof. Alan Tennant, Leiter des Instituts Komplexe Magnetische Materialien am HZB, erläutert: „In unserem Experiment mit Kobalt-Niobat haben wir durch Anlegen des Magnetfeldes gewissermaßen am Regler gedreht und dabei das System immer näher an den quantenkritischen Zustand herangebracht.“

Dabei konnten die Forscher sehen, wie sich die Kette aus Atomen verhält. „Wie eine Gitarrenseite auf Nanoebene“, sagt Dr. Radu Coldea, der das internationale Projekt an der Oxford University begonnen und bis heute, über zehn Jahre lang geführt hat. „Die Schwingung der Seite entspricht in diesem Bild der Wechselwirkung, die benachbarte Spinketten miteinander eingehen“, sagt Coldea. „Wie bei einer Gitarrenseite entstehen dabei auch Resonanzen.“ Von den beobachteten Resonanz-Frequenzen stehen die ersten beiden im Verhältnis 1,618…, zueinander, „was genau dem Goldenen Schnitt entspricht“, so Radu Coldea. Er ist überzeugt, dass dies kein Zufall ist. „Es spiegelt eine versteckte Symmetrie wider, die dem Quantensystem seine schönen, harmonischen Eigenschaften verleiht. Von Mathematikern wird sie als E8 bezeichnet. Diese mathematische Symmetrieeigenschaft haben wir nun zum ersten Mal in einem festen Material beobachtet.“

Die Forscher haben dies mit einer speziellen Untersuchungsmethode erreicht, der Neutronenstreuung. Dabei werden Neutronen auf eine Probe geschossen, wobei die Neutronen mit den magnetischen Momenten der Elektronen im Probenmaterial in Wechselwirkung treten. Das magnetische Muster und die Resonanzen lassen sich damit sehr exakt in örtlicher und zeitlicher Auflösung messen. Dr. Elisa Wheeler, die sowohl in Oxford als auch in Berlin an dem Projekt gearbeitet hat, hebt die Messmethode hervor: „Mit der Neutronenstreuung können wir sehen, wie unterschiedlich die Quantenwelt zu unserer gewohnten Welt tatsächlich ist.“ Die experimentellen Anforderungen seien jedoch sehr hoch, denn man muss in ein hoch komplexes Neutronenexperiment zugleich Techniken der Tieftemperaturphysik und der magnetischen Hochfeldtechnik integrieren. „Das HZB in Berlin ist für solche Anforderungen bestens geeignet. Die spezielle Berliner Expertise hat in Kombination mit den Möglichkeiten, die das ISIS bei Oxford mit seiner gepulsten Neutronenquelle bietet, das Experiment zum Erfolg geführt.

Laut Alan Tennant ist die Beobachtung des Resonanzzustandes im Kobalt-Niobat eine eindrucksvolle Demonstration von experimenteller Laborarbeit. Mathematische Theorien, die eigentlich für die Teilchenphysik entwickelt wurden, finden dabei auf nanoskaliger Ebene Anwendung in der Festkörperphysik. Alan Tennant: „Bemerkenswert ist, dass man in einem Quantensystem, dem die Heisenbergsche Unschärfe zugrunde liegt, keine Unordnung findet, sondern die perfekte Harmonie.“ Solche Erkenntnisse könnten zu völlig neuen Technologien führen, so Tennant. Außerdem „sind sie ein weiterer Beweis für die Physiker, dass in der Quantenwelt eigene Strukturen existieren. Das heißt, ähnliche Überraschungen können uns in anderen Materialien im quantenkritischen Zustand ebenfalls erwarten.“

Weitere Informationen:

Dr. Elisa Wheeler
Young Investigator Group Magnetism and Superconductivity
Tel.: +49-30-8062-2926
elisa.wheeler@helmholtz-berlin.de
Prof. Dr. Alan Tennant
Head of Institute Complex Magnetic Materials
Tel.: +49-30-8062-2741
tennant@helmholtz-berlin.de
Pressestelle:
Dr. Ina Helms
Tel.: +49-30-8062-2034
ina.helms@helmholtz-berlin.de

Media Contact

Dr. Ina Helms idw

Weitere Informationen:

http://www.helmholtz-berlin.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer