Forscher werfen erstmals einen Blick ins Auge von Majoranas
Vor rund 75 Jahren vermutete der italienische Physiker Ettore Majorana die Existenz von exotischen Teilchen, die gleich ihrem eigenen Antiteilchen sind. Das Interesse an diesen Teilchen, Majorana-Fermionen genannt, ist seither enorm gestiegen, da sie bei der Realisierung eines Quantencomputers eine Rolle spielen könnten.
Theoretisch sind die Majoranas bereits recht gut beschrieben. Ihr experimenteller Nachweis und ihre Untersuchung gestalten sich jedoch schwierig, da sie immer in Paaren vorkommen müssen, aber dann meistens zu einem normalen Elektron vereint sind. Es braucht daher sehr ausgeklügelte Kombinationen und Anordnungen von verschiedenen Materialien, um zwei Majoranas zu erzeugen und auf Abstand zu halten.
Zusammenarbeit von Theorie und Praxis
Basierend auf Vorhersagen und Berechnungen der theoretischen Physiker Prof. Jelena Klinovaja und Prof. Daniel Loss hat nun die Gruppe um Prof. Ernst Meyer (alle Swiss Nanoscience Institute und Departement Physik der Universität Basel) Zustände experimentell gemessen, die Majoranas entsprechen. Die Forscher haben dazu auf einem Supraleiter aus Blei einzelne Eisenatome mit Spin aufgedampft, die sich aufgrund der reihenförmigen Struktur der Bleiatome zu einem winzigen Draht bestehend aus einer Reihe einzelner Atome anordnen. Die Drähte erreichten dabei eine erstaunliche Länge von bis zu 70 Nanometern.
Einzelne Majoranas an den Enden
Die Forscher untersuchten diese mono-atomaren Nanodrähte mithilfe von Rastertunnelmikroskopie und erstmals auch mit einem Rasterkraftmikroskop. Anhand der Aufnahmen und Messungen fanden sie unter bestimmten Bedingungen und ab einer bestimmten Drahtlänge an den Enden der Drähte klare Hinweise auf das Vorhandensein von einzelnen Majorana-Fermionen.
Die beiden Majoranas an den Drahtenden sind dabei trotz ihrer räumlichen Trennung miteinander verbunden. Dadurch bilden sie gemeinsam einen neuen über den ganzen Draht ausgedehnten Zustand, der entweder durch ein Elektron besetzt («1») oder nicht besetzt («0») sein kann. Diese binäre Eigenschaft kann dann als Basis für ein Quanten-Bit (Qubit) dienen und macht die Majoranas, die zudem sehr robust gegen etliche Umwelteinflüsse sind, zu vielversprechenden Kandidaten für die Realisierung eines zukünftigen Quantencomputers.
Vorhergesagte Wellenfunktion gemessen
Die Basler Forscher haben nicht nur gezeigt, dass sich an den Enden des Eisendrahtes einzelne Majoranas erzeugen und messen lassen. Wie die Kolleginnen und Kollegen aus der Theorie bereits berechnet hatten, konnten sie nun erstmals auch experimentell belegen, dass die Majoranas eine Ausdehnung mit innerer Struktur aufweisen. Über einen Bereich von einigen Nanometern zeigten sie in den Messungen die erwartete Wellenfunktion mit charakteristischen Oszillationen und zweifachen Zerfallslängen, die nun zum ersten Mal deutlich sichtbar gemacht wurden.
Originalbeitrag
Rémy Pawlak, Marcin Kisiel, Jelena Klinovaja, Tobias Meier, Shigeki Kawai, Thilo Glatzel, Daniel Loss, and Ernst Meyer
Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface
npj Quantum Information (2016), doi: 10.1038/npjqi.2016.35
Weitere Auskünfte
Prof. Dr. Jelena Klinovaja, Universität Basel, Departement Physik, Tel. +41 61 267 36 56, E-Mail: jelena.klinovaja@unibas.ch
Prof. Dr. Daniel Loss, Universität Basel, Departement Physik, Tel. +41 (0)61 267 37 49, E-Mail: daniel.loss@unibas.ch
Prof. Dr. Ernst Meyer, Universität Basel, Departement Physik, Tel. +41 (0)61 267 37 24, E-Mail: ernst.meyer@unibas.ch
Media Contact
Weitere Informationen:
http://www.unibas.chAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Planetare Grenzen als Schlüsselkonzept, um Risiken für das Erdsystem zu mindern
Das Konzept der planetaren Grenzen ist ein entscheidendes Instrument, um die Klimakrise zu bewältigen und die Zukunft der Menschheit auf der Erde zu sichern. Erstmals wird die Geschichte der planetaren…
Natürliche Nanopartikel-Bildung bei Regenfällen im Amazonas
Niederschläge im Amazonas-Regenwald lassen massenhaft natürliche Nanopartikel entstehen, die zur Bildung von Wolken und weiteren Regenfällen führen können. Atmosphärische Aerosolpartikel sind für die Bildung von Wolken und Niederschlag essenziell und…
Forschende machen Düsentriebwerke fit für das Wasserstoffzeitalter
Flugzeuge sollen künftig mit Wasserstoff um die Welt fliegen. Ingenieure und Ingenieurinnen entwickeln dafür Düsentriebwerke. Damit diese Motoren leistungsfähig und langlebig werden, liefern Experimente von Forschenden der ETH Zürich nun…