Forschende erzeugen exotischen Quantenlicht-Zustand

Die Grafik symbolisiert, wie Photonen gekoppelt werden, nachdem sie an einem künstlichen Atom – einem sogenannten Quantenpunkt – in einem Hohlraumresonator gestreut wurden.
(c) Universität Basel

Lichtteilchen, auch Photonen genannt, interagieren normalerweise nicht miteinander.

Ein internationales Forschungsteam konnte nun erstmals zeigen, dass einige wenige Photonen kontrolliert manipuliert und zur Wechselwirkung gebracht werden können. Das eröffnet neue Möglichkeiten in der Entwicklung von Quantentechnologien. Die Ergebnisse beschreibt ein Team der Universität Basel, der University of Sydney und der Ruhr-Universität Bochum in der Zeitschrift Nature Physics, online veröffentlicht am 20. März 2023.

Photonen interagieren im Vakuum nicht miteinander; sie können ungestört durcheinander hindurchfliegen. Das macht sie wertvoll für den Datentransfer, weil Informationen mit Lichtgeschwindigkeit nahezu störungsfrei transportiert werden können. Nicht nur für die Datenübermittlung, sondern auch in gewissen Messinstrumenten ist Licht hilfreich, weil damit winzige Abstände bestimmt werden können, beispielsweise in der medizinischen Bildgebung. Die Sensitivität solcher Messinstrumente ist dabei abhängig von der durchschnittlichen Anzahl der Photonen im System.

Auch wenn Photonen nicht untereinander wechselwirken, so interagieren sie doch mit anderen Materialien, beispielsweise wenn sie durch Glas hindurchfliegen. Diese Interaktion ist normalerweise unabhängig von der Intensität des Lichts. Nur wenn man sehr energiereiches Laserlicht verwendet, beeinflusst die Intensität die Interaktion. In der aktuellen Arbeit zeigten die Forschenden nun einen solchen Intensitätseffekt für nur zwei Photonen. Sie wiesen nach, dass ein einzelnes Photon etwas langsamer durch ihr Messinstrument flog als zwei Photonen.

Damit demonstrierten die Forschenden außerdem die von Einstein 1916 postulierte stimulierte Lichtemission erstmals für einzelne Photonen. Der Effekt war die Grundlage für die Erfindung des Lasers und ist zuvor nur bei einer großen Anzahl von Photonen beobachtet worden.

Quantenlicht mithilfe von künstlichen Atomen erzeugt

Um das Licht auf die beschriebene Weise zu manipulieren, erzeugte das Team in einem Halbleiter einen Hohlraum, welcher die Lichtteilchen festhielt, sowie ein künstliches Atom, einen sogenannten Quantenpunkt. In diesem wurden die Photonen aneinandergebunden, und es entstand ein neuer verschränkter Zustand – eine Art Schicksalsgemeinschaft, in der sich der Doppelpack anders verhält als einzelne Photonen.

Bessere Auflösung und höhere Sensitivität mit Quantenlicht

Solches verschränktes Quantenlicht ermöglicht prinzipiell sensitivere Messungen mit höherer Auflösung. Da die Technik auf wenigen Photonen basiert, wäre sie auch bei lichtempfindlichen Proben von Vorteil, wie sie in der biologischen Mikroskopie häufig vorkommen, wo die aufzulösenden Strukturen zudem sehr klein sind.

Die Quantenpunkte stellte das Team um Dr. Arne Ludwig von der Ruhr-Universität Bochum her. Die Experimente führte die Gruppe um Dr. Natasha Tomm und Prof. Dr. Richard Warburton von der Universität Basel durch. Die theoretischen Grundlagen legte Dr. Sahand Mahmoodian von der University of Sydney und von der Leibniz Universität Hannover.

Die Forschenden hoffen, dass ihre Experimente den ersten Schritt darstellen, um Quantenlicht für Anwendungen nutzbar zu machen.

Förderung

Die Arbeiten wurden unterstützt vom Schweizerischen Nationalfonds, der Europäischen Union im Rahmen des Horizon 2020-Programms, dem Forschungsfonds der Universität Basel, der Deutschen Forschungsgemeinschaft, dem Bundesministerium für Bildung und Forschung sowie dem Australian Research Council und ARC Centre of Excellence in Engineered Quantum Systems.

Wissenschaftliche Ansprechpartner:

Dr. Arne Ludwig
Lehrstuhl für Festkörperphysik
Fakultät für Physik und Astronomie
Ruhr-Universität Bochum
Deutschland
Tel.: +49 234 32 25864
E-Mail: arne.ludwig@rub.de

Prof. Dr. Richard J. Warburton
Departement Physik
Philosophisch-Naturwissenschaftliche Fakultät
Universität Basel
Schweiz
Tel.: +41 61 207 35 60
E-Mail: richard.warburton@unibas.ch

Originalpublikation:

Natasha Tomm, Sahand Mahmoodian, Nadia O. Antoniadis, Rüdiger Schott, Sascha R. Valentin, Andreas D. Wieck, Arne Ludwig, Alisa Javadi, Richard J. Warburton: Photon bound state dynamics from a single artificial atom, in: Nature Physics, 2023, DOI: 10.1038/s41567-023-01997-6, https://www.nature.com/articles/s41567-023-01997-6

https://news.rub.de/wissenschaft/2023-03-21-physik-forschende-erzeugen-exotischen-quantenlicht-zustand

Media Contact

Dr. Julia Weiler Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer