Ein Fenster ins Innere von Graphen
Robuster als Diamant, dichter als Glas, leitfähiger als Kupfer – Wenn Physiker und Materialforscher von Graphen sprechen, kommen sie leicht ins Schwärmen.
Denn das bienenwabenförmige Material aus einer einzelnen Atomlage Kohlenstoff ist für eine Vielzahl potenzieller Anwendungen interessant. „Aufgrund seiner einzigartigen Struktur ist Graphen nicht nur als elektrischer Leiter hervorragend geeignet.
Es kann auch als Beschichtung für Verpackungen und Schutzhüllen, als Lasermedium oder in Detektoren eingesetzt werden“, sagt Prof. Dr. Alexander Szameit von der Friedrich-Schiller-Universität Jena.
Entscheidend für den praktischen Einsatz sei es, die elektronischen Eigenschaften des außergewöhnlichen Materials präzise bestimmen und auch gestalten zu können, so der Juniorprofessor für Diamant-/Kohlenstoffbasierte optische Systeme. Und das galt bislang als äußert knifflig.
Doch den Physikern der Uni Jena um Prof. Szameit und Prof. Dr. Stefan Nolte ist es jetzt mit einem internationalen Team gelungen, das Verhalten von Elektronen in dem Zukunftsmaterial umfassend zu charakterisieren. In der aktuellen Ausgabe des renommierten Fachmagazins „Nature Materials“ stellen die Forscher experimentelle Daten vor, anhand derer sich die elektronischen Eigenschaften insbesondere in den Randstrukturen des Graphen-Kristalls exakt simulieren lassen (DOI:10.1038/NMAT3783). Die Beschaffenheit der Randbereiche ist dabei entscheidend für die elektronischen Eigenschaften des gesamten Kristalls.
„Wir nutzen für unsere Experimente ein photonisches Modell des Graphen“, sagt Prof. Nolte. Dafür haben die Jenaer Physiker per Laser einige Hundert winzige Lichtleiter in einen Glas-Chip graviert, die wie im Graphen in einem Bienenwabenmuster angeordnet sind und so die einlagige Kristallstruktur simulieren.
„Wird Licht in das Modell eingestrahlt, so verteilen sich die Lichtteilchen, die Photonen, über den gesamten Kristall – so wie die extrem beweglichen Elektronen im echten Graphen für seine enorme elektrische Leitfähigkeit sorgen“, erläutert der Professor für Experimental- und Laserphysik. Dieses Modell sei wie ein Fenster, durch das man ins Innere des faszinierenden Kristalls sehen könne.
Auf diese Weise haben die Forscher der Uni Jena, der San Francisco State University und des Technion – Israel Institute of Technology in Haifa das Verhalten von Photonen in den Randbereichen des Modell-Kristalls untersuchen können. „Aufgrund der sechseckigen Grundstruktur des Graphen-Kristalls können die Ränder unterschiedliche Formen annehmen“, weiß Prof. Szameit. Diese bilden – wie die Fransen um einen Teppich – entweder ein Zickzackmuster, eine „Bart-“ oder „Armlehnenform“.
„Unter bestimmten experimentellen Bedingungen können sich die Elektronen nur entlang dieser Randbereiche und nicht ins Innere des Kristalls bewegen“, so der Jenaer Physiker weiter. Ob jedoch solche sogenannten „Oberflächenzustände“ entstehen, hänge entscheidend von der jeweiligen Form der Randstruktur ab. Die Existenz solcher Zustände ist jedoch ein wichtiges Mittel, um die Leitfähigkeit von Graphen kontrollieren zu können.
In der aktuellen Publikation weisen die Forscher jetzt erstmals überhaupt Oberflächenzustände bei bartförmigen Randstrukturen nach. „Diese sind zwar theoretisch vorhergesagt worden, konnten aber bislang experimentell nicht untersucht werden, weil echtes Graphen mit bartförmigen Rändern zu instabil ist“, so Szameit. Anhand des stabilen photonischen Modells war das aber problemlos möglich. Zudem ist es dem Forscherteam gelungen, einen bislang gänzlich unbekannten Oberflächenzustand nachzuweisen.
„Das bedeutet, dass die bisherige theoretische Beschreibung der Elektronenbewegung entlang der Ränder des Graphen-Kristalls unvollständig war und wir diese Lücke jetzt schließen konnten“, resümiert Szameit. Er ist sicher, dass sich mit den Erkenntnissen, die man aus diesen Experimenten gewinnt, neue Möglichkeiten für graphen-basierte Anwendungen erschließen lassen – und damit dem „Zukunftsmaterial“ Graphen weiter Schub verleiht.
Original-Publikation:
Plotnik Y et al. Observation of Tamm-like edge states in ‘photonic graphene‘, Nature Materials 2013, DOI:10.1038/nmat3783
Kontakt:
Prof. Dr. Alexander Szameit
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Albert-Einstein-Straße 15, 07745 Jena
Tel.: 03641 / 947985
E-Mail: alexander.szameit[at]uni-jena.de
Media Contact
Weitere Informationen:
http://www.uni-jena.deAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge

Photosynthese: Wechselnde Pfade ins Reaktionszentrum
LMU-Chemiker untersuchen mit hochgenauer Quantenchemie zentrale Elemente des besonders effizienten Energietransfers in einem wichtigen Bestandteil der Photosynthese. Die Photosynthese ist der Motor allen Lebens auf der Erde. Damit aus Sonnenlicht,…

Satellitendaten unterstützen kleinbäuerlichen Anbau in Afrika
Marburger Klimaforschung und Start-Ups wollen mit intelligenter Datenauswertung zur Ernährungssicherheit beitragen. Kleinbäuer*innen stellen im Afrika südlich der Sahara eine zentrale Säule der lokalen Ernährungssicherheit dar. Klima- und Umweltwandel bedrohen dabei…

Neue Therapien für neurodegenerative Erkrankungen
Neurodegenerative Erkrankungen wie beispielsweise Parkinson oder Alzheimer sind Alterserkrankungen, das heißt ihr Vorkommen steigt mit dem Lebensalter kontinuierlich an. Durch die zunehmende Lebenserwartung der Bevölkerung werden neurodegenerative Erkrankungen neben Tumorerkrankungen…