Faserlaser mit einstellbarer Wellenlänge

Flexibel abstimmbare Faserlaser sind für spektroskopische Anwendungen und die Medizintechnik interessant. Foto: S. Döring/Leibniz-IPHT
Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten Laseraufbau ermöglichen sie kompakte, robuste und wartungsfreie Systeme. Grundlage der Lichtquellen sind optische Glasfasern, deren Kern geringe Mengen Seltenerd-Ionen enthält.
Diese Dotierung erzeugt in der Faser als aktives Lasermedium hochintensives Licht über einen bestimmten Wellenlängenbereich. Für eine breite Anwendung der Systeme mangelte es bisher an einem in die Faserarchitektur integrierbarem Konzept, um einzelne Wellenlängen flexibel über die komplette Verstärkungsbandbreite der Laser einzustellen.
„Die Basis für abstimmbare Laser sind spektrale Filter, sogenannte Faser-Bragg-Gitter. Mit einem am Institut entwickelten Verfahren haben wir die Möglichkeit während des Faserziehens die Gitter schnell und kostengünstig in fast unbegrenzter Anzahl in den Kern einzuschreiben und so ein Gitter-Array zu erzeugen“, beschreibt Projektmitarbeiter Tobias Tieß die Funktionsweise. Jedes Gitter besitzt eine andere Brechzahlstruktur und reflektiert dadurch Licht mit einer spezifischen Wellenlänge wie ein Spiegel.
„Indem wir die Laufzeit der Lichtpulse durch die Faser im Nanosekunden-Bereich steuern, können wir einzelne Gitter des Arrays ansteuern und damit die Wellenlänge des Laserlichts wie gewünscht einstellen“, so Tieß weiter. Dazu mussten die Forscher bisher die Pulsschussrate des Lasers verändern, was Anwendungen in der Spektroskopie erschwert, da diese oft auf synchronisierten Prozessen beruhen.
Diese Lücke haben Wissenschaftlerinnen und Wissenschaftler des Leibniz-IPHT nun geschlossen. Ein neuer, im Rahmen des Projekts „FlexTune“ konzipierter, Laserresonator grenzt bei gleichbleibender Pulsrate das emittierte Licht auf die Antwort eines einzelnen Gitters, das heißt eine Wellenlänge, ein. Der Resonator arbeitet mit einer zeitlich variablen Schleife, die einzelne Wellenlängen über die spektral abhängigen Laufzeitunterschiede der Lichtpulse filtert.
„Das Abstimmkonzept erlaubt es uns, eine beliebige Wellenlänge mit konstanter Pulsschussrate und stabilen Pulseigenschaften über den kompletten Arbeitsbereich einzustellen. Die Flexibilität legt zudem die Grundlage für einen abstimmbaren Mehrwellenlängenbetrieb. Damit können wir erstmals verschiedene Emissionslinien unabhängig voneinander und zeitlich synchron erzeugen“, erläutert Tieß die Vorteile des patentierten Prinzips.
Die Jenaer Forscherinnen und Forscher demonstrierten den Betrieb des Lasers mit bis zu drei Wellenlängen und hoher Synchronisierung (Pulsüberlapp von >99% im 2-Wellenlängenbetrieb) über eine Abstimmbandbreite von 50 Nanometern. Mit den flexiblen, gepulsten Faserlasern öffnet sich ein perspektivisches Anwendungsspektrum für die Lebenswissenschaften und Biophotonik.
Das Projekt „Flexibel abstimmbare gepulste Faserlaser mittels FBG-Arrays (FlexTune;13N13865)“ wurde von Februar 2016 bis April 2018 im Rahmen der Initiative „Wissenschaftliche Vorprojekte (WiVoPro)“ innerhalb des Programms Photonik Forschung Deutschland vom BMBF gefördert. Ziel der Initiative ist es, mittelfristig den Transfer neuer wissenschaftlicher Erkenntnisse in innovative Produkte zu erleichtern.
Die Ergebnisse des Projekts veröffentlichten die Forscher in zwei Artikeln in referierten Fachjournalen sowie mehreren Konferenzbeiträgen.
Das Leibniz-Institut für Photonische Technologien:
Das Leibniz-Institut für Photonische Technologien (Leibniz-IPHT) erforscht die wissenschaftlichen Grundlagen für photonische Verfahren und Systeme höchster Sensitivität, Effizienz und Auflösung. Gemäß dem Motto „Photonics for Life – from ideas to instruments“ entwickeln Wissenschaftlerinnen und Wissenschaftler am Leibniz-IPHT maßgeschneiderte Lösungen für Fragestellungen aus den Bereichen Lebens- und Umweltwissenschaften sowie Medizin.
https://www.leibniz-ipht.de/institut/presse/aktuelles/detail/faserlaser-mit-eins…
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-42-6-1125 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-22-26393
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge

CT der Lunge: Neue Methode macht gleichzeitig Struktur und Funktion sichtbar
Ein Radiologie-Team der Medizinischen Hochschule Hannover (MHH) hat eine neue Technik zur Bildgebung der Lunge entwickelt. Bei den Untersuchungen nutzt es die innovative photonenzählende Computertomografie (CT). Die Aufnahmen schaffen neue…

Neuartiger Ansatz zur Herstellung von Nanomaterialien entwickelt
Wissenschaftlerinnen und Wissenschaftler der Friedrich-Schiller-Universität Jena und der Friedrich-Alexander- Erlangen-Nürnberg ist es gelungen, Nanomaterialien kontrolliert in einem sogenannten Bottom-Up-Ansatz herzustellen. Wie sie im Fachjournal ACS Nano berichten, nutzen sie dabei…

Auf den Plastik-Geschmack gekommen
Erstmals entdeckt: Neues Enzym aus der Tiefsee baut den Kunststoff PET ab. Plastikverschmutzung verändert zunehmend die Gesundheit der Küsten und Meere. Ein hierbei bekanntes Problem sind Plastikflaschen, die aus dem…