Experimentalphysik – Protonenstrahlung nach explosiver Vorarbeit

Der Texas Petawatt Laser Puls (rot) wird auf eine schwebende Mikrokugel fokussiert. Die enorme Lichtintensität verursacht die Explosion der Mikrokugel, wodurch potenziell vielseitig nutzbare energetische Ionen (blau) aus einer sehr kleinen Quelle erzeugt werden können. (Bild: Tobias Ostermayr)

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik – Medizinische Physik der LMU und dem Exzellenzcluster Munich-Center for Advanced Photonics (MAP) nutzt die gebündelte Energie als Sprengkraft:

Die Forscher bündeln Laserlicht auf wenige Mikrometer große Kügelchen aus Plastik. Die geballte Energie lässt die Nanopartikel explodieren. Dadurch wird Strahlung aus positiv geladenen Atomen (Protonen) frei. Eine solche Protonenstrahlung könnte künftig zur Tumorbekämpfung und für neuartige, bildgebende Verfahren eingesetzt werden. Darüber berichten die Forscher aktuell in der Fachzeitschrift Physical Review E.

Die LMU-Physiker haben Laserlicht des Texas Petawatt Lasers in Austin Texas so stark auf Nano-Plastikkügelchen gebündelt, dass diese quasi explodierten. Bei diesem Versuch trafen rund eine Billiarde Milliarden Photonen (3 mal 1020 Photonen) auf Mikrokügelchen von etwa 500 Nanometer Durchmesser. Die Plastikkügelchen bestanden aus rund 50 Milliarden Kohlenstoff- und Wasserstoffatomen und wurden mit einer sogenannten Paulfalle durch elektromagnetische Felder schwebend fixiert, bevor der Laserstrahl auf sie einwirkte.

Das Laserlicht riss aus den Atomen rund 15 Prozent der in ihnen gebundenen Elektronen heraus. Die zurückbleibenden, positiv geladenen Atomkerne stießen sich stark ab, die Nanokügelchen explodierten mit Geschwindigkeiten von einigen zehn Prozent der Lichtgeschwindigkeit. Die Strahlung aus positiv geladenen Atomen (Protonen) breitete sich in alle Richtungen aus.

Protonenstrahlung aus Laserlicht zu produzieren, eröffnet neue Wege in der Strahlungsmedizin, etwa bei der Bekämpfung von Tumoren. Heute wird Protonenstrahlung noch über konventionelle Beschleuniger produziert. Lasergenerierte Protonenstrahlung dagegen eröffnet die Perspektive, neuartige, womöglich auch kostengünstigere und effizientere Behandlungsmethoden zu entwickeln.

Das Team um Jörg Schreiber produziert Protonenstrahlung in der Regel über diamantartige Folien, auf die extrem starkes Laserlicht trifft. Dadurch wird Protonenstrahlung emittiert, die dann von einer externen Quelle auf den Körper von außen einwirkt. Die Strahlungsproduktion in Verbindung mit gesprengten Plastikkügelchen eröffnet vielleicht sogar die Möglichkeit, die Nanopartikel zuerst in einem Tumor zu platzieren und sie dann mit Laserlicht explodieren zu lassen. So könnte Protonenstrahlung gezielt im Tumor ihre Wirkung entfalten ohne umliegendes, gesundes Gewebe zu schädigen.

Publikation:
T.M. Ostermayr, D. Haffa, P. Hilz, V. Pauw, K. Allinger, K.-U. Bamberg, P. Böhl, C. Bömer, P.R. Bolton, F. Deutschmann, T. Ditmire, M.E. Donovan, G. Dyer, E. Gaul, B.M. Hegelich, D. Kiefer, C. Klier, C. Kreuzer, M. Martinez, A.R. Meadows, N. Moschüring, T. Rösch, H. Ruhl, C. Wagner, and J. Schreiber:
“Proton acceleration by irradiation of isolated spheres with an intense laser pulse”
In: Physical Review E (Vol.94, No.3), DOI: 10.1103/PhysRevE.94.033208
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.033208

Kontakt
Prof. Dr. Jörg Schreiber
Ludwig-Maximilians-Universität München (LMU)
Fakultät für Physik, Lehrstuhl für Experimentalphysik – Medizinische Physik
85748 Garching
Tel.: 089 289-54025
E-Mail: Joerg.Schreiber@lmu.de

Media Contact

Luise Dirscherl Ludwig-Maximilians-Universität München

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer