Erstmals Schaleneffekte in den schwersten Elementen direkt gemessen

Ausschnitt der Nuklidkarte (Neutron-Proton-Kombinationen) im Bereich der schwersten Elemente. Diese „Landkarte“ zeigt die bisher bekannten Isotope der schwersten Elemente als Kästchen. Blau: Theoretische Vorhersage der durch Schaleneffekte erhöhten Bindungsenergie. Rot: Gemessene Lawrencium- und Nobeliumisotope. Grün / gelb: Nuklide, deren Masse durch die Messergebnisse besser bestimmt wird. Orange: Lage gefüllter Schalen.<br><br>Bild: Science/AAAS<br>

Ein internationales Team von Wissenschaftlern hat zum ersten Mal die Stärke von Schaleneffekten in Atomkernen sehr schwerer Elemente direkt gemessen. Die Ergebnisse liefern Informationen über die Kernstruktur superschwerer Elemente und dienen dazu, die Vorhersagen über die „Insel der Stabilität“ zu verbessern.

So nennen Wissenschaftler eine Gruppe von Atomkernen superschwerer Elemente, die nicht in kurzer Zeit zerfallen, sondern außerordentlich stabil und damit langlebig sind. Wo sich diese Insel genau befindet, ist bislang nicht bekannt.

Die jetzigen Messungen an der GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt erfolgten an den Elementen Nobelium und Lawrencium mit der Ionenfallenanlage SHIPTRAP. Die Ergebnisse der Forschergruppe hat das renommierte Wissenschaftsmagazin Science veröffentlicht.

„Superschwer“ genannte Elemente werden durch Schaleneffekte im Atomkern stabilisiert und können nur deshalb überhaupt existieren, wenn auch in der Regel nur für kurze Zeiten. Die starke Wechselwirkung führt dazu, dass die Bausteine der Atomkerne, die Protonen und Neutronen, in Schalen angeordnet sind. Bei jeweils einer bestimmten als „magisch“ bezeichneten Anzahl von Protonen und Neutronen sind Schalen komplett gefüllt und die Bausteine besonders stark gebunden. Entsprechend sind solche Atomkerne stabiler und langlebiger. Ohne den stabilisierenden Einfluss der Schalen würden superschwere Atomkerne wegen der starken gegenseitigen Abstoßung der vielen Protonen augenblicklich zerplatzen.

Theoretische Vorhersagen lassen erwarten, dass gefüllte Protonen‐ und Neutronenschalen bei superschweren Atomkernen zu sehr langen Lebensdauern führen, der „Insel der Stabilität“. Wo genau die entsprechenden Schalenabschlüsse liegen, ist allerdings zurzeit noch umstritten. Einige theoretische Ansätze sagen beispielsweise die nächste magische Protonenzahl für Element 114 vorher, andere für Element 120 oder sogar 126. Unklar ist auch, welche Lebensdauern diese Atomkerne haben, ob „nur“ hunderte von Jahren oder vielleicht doch Jahrtausende oder sogar Jahrmillionen. Alle bisher bekannten Atomkerne superschwerer Elemente wurden im Labor erzeugt und sind kurzlebig. In der Natur konnten superschwere Elemente bisher nicht nachgewiesen werden.

Für genauere theoretische Vorhersagen ist die Kenntnis der Stärke der Schaleneffekte, die eine erhöhte Bindungsenergie der Kernbausteine bei gefüllten Schalen bewirken, extrem wichtig. Die Bindungsenergie ist nach Einsteins berühmter Formel E=mc^2 direkt mit der Masse verknüpft. Mit der Ionenfallenanlage SHIPTRAP, der genauesten Waage der Welt für die schwersten Elemente, gelang es jetzt erstmals, sehr schwere Atomkerne im Bereich der magischen Neutronenzahl N=152 sehr genau zu wiegen. Insbesondere wurden die Verhältnisse bei Nobelium (Element 102) und Lawrencium (Element 103) untersucht. Da diese Elemente nicht in der Natur vorkommen, mussten die Wissenschaftler sie am GSI‐Teilchenbeschleuniger herstellen und dann mit der Ionenfalle einfangen. Die Herausforderung bestand unter anderem in der geringen Anzahl von Teilchen, die zur Verfügung standen, zum Beispiel beim Isotop Lawrencium‐256 gerade einmal knapp 50 Atome über eine Messzeit von etwa vier Tagen.

Die neuen Messergebnisse dienen dazu, die aktuell besten Modelle zur Beschreibung der schwersten Elemente zu testen und stellen so einen wichtigen Baustein zur Weiterentwicklung der Modelle dar. Damit werden präzisere Vorhersagen zur Lage und Ausdehnung der „Insel der Stabilität“ superschwerer Elemente inmitten von radioaktiven, schnell zerfallenden Elementen möglich.

Die Experimente wurden unter Federführung der GSI und des 2009 gegründeten Helmholtz‐Instituts Mainz (HIM), das gemeinsam von der GSI und der Johannes Gutenberg‐Universität Mainz getragen wird, durchgeführt. Beteiligt waren auch Wissenschaftler der Universitäten Gießen, Granada (Spanien), Greifswald, Heidelberg, Mainz, München und Padua (Italien) sowie des Max‐Planck‐Instituts für Kernphysik Heidelberg und des PNPI St. Petersburg (Russland).

Wissenschaftliche Ansprechpartner:
Dr. Michael Block
GSI Helmholtzzentrum für Schwerionenforschung
Planckstrasse 1
64291 Darmstadt
http://www.gsi.de

Prof. Dr. Christoph E. Düllmann
Helmholtz Institut Mainz und Institut für Kernchemie
Johannes Gutenberg-Universität
55099 Mainz

http://www.helmholtz.de/en/research/promoting_research/helmholtz_
institutes/helmholtz_institute_mainz
http://www.kernchemie.uni-mainz.de/eng/index.php

Prof. Klaus Blaum
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
http://www.mpi-hd.mpg.de

Prof. Lutz Schweikhard
Institut für Physik
Ernst-Moritz-Arndt-Universität Greifswald
17487 Greifswald
http://www.physik.uni-greifswald.de/physik01

Priv. Doz. Dr. Peter G. Thirolf
Fakultät für Physik der Ludwig-Maximilians- Universität
Am Coulombwall 1
85748 Garching
http://www.en.physik.uni-muenchen.de/index.html

Dr. Wolfgang Plaß
II. Physikalisches Institut
Justus-Liebig Universität
Heinrich-Buff-Ring 14
35392 Gießen
http://pcweb.physik.uni-giessen.de/exp2
http://dx.doi.org/10.1126/science.1225636
Originalveröffentlichung: E. Minaya Ramirez et al. “Direct mapping of nuclear shell effects in the heaviest elements” von, Science 2012

Media Contact

Dr. Ingo Peter idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer