Ein mikroskopisch kleiner Ring für pulsierendes Licht

Im Allgemeinen werden sowohl Licht- als auch Wasserwellen im Laufe ihrer Bewegung immer flacher, bis sie irgendwann ganz verschwinden. Es gibt aber auch Wellen, deren Form sich durch das Fortpflanzen nicht verändert: Solitonen.

Vom Schweizerischen Nationalfonds (SNF) unterstützten Forschenden ist es gelungen, mithilfe eines Mikroresonators optische Solitonen zu erzeugen – Lichtwellen, die ihre Form beibehalten. Das erzeugte Licht setzt sich aus einer Vielzahl an Frequenzen zusammen, die stets genau denselben Abstand voneinander haben. Physiker nennen dies einen Frequenzkamm – eine Analogie zu den regelmässigen Abständen zwischen den Zähnen eines Haarkamms.

Neuer Rekord

Um diese Solitonen zu erzeugen, haben Forschende der EPFL und des Russian Quantum Center in Moskau Mikroresonatoren verwendet. „Dabei handelt es sich um mikroskopisch kleine, sehr dünne Ringe aus Siliziumnitrid“, erklärt Tobias Kippenberg, der Gruppenleiter an der EPFL. „Das Besondere an den Mikroresonatoren ist, dass sie das Licht des Lasers, an den sie gekoppelt sind, einige Nanosekunden lang speichern können. Während dieser Zeit zirkuliert das Licht tausende Male im Ring und akkumuliert sich, wodurch sich die Intensität im Ring deutlich verstärkt.“ Es entsteht eine nicht-lineare Interaktion zwischen Mikroresonator und Licht. Der normalerweise kontinuierliche Laser wird in ultrakurze Pulse umgewandelt: die Solitonen.

Indem sie den Aufbau der Mikroresonatoren anpassten, gelang es den Forschenden der EPFL, zusätzlich eine Solitonen-Tscherenkow-Strahlung zu erzeugen. Diese fördert die Erweiterung des Frequenzspektrums: Der Kamm umfasst mehr Zähne. Die im Fachmagazin Science (*) veröffentlichten Ergebnisse stellen einen neuen Rekord für diese Art von Struktur dar: Die erzeugten Frequenzen können nun im Vergleich zur Laserfrequenz einen Bereich von zwei Drittel einer Oktave umspannen.

Patent angemeldet

„Diese Ergebnisse sind ein vielversprechender Fortschritt für Anwendungsbereiche, bei denen viele Frequenzen mit einem grossen Abstand benötigt werden“, so Kippenberg. In der optischen Telekommunikation könnte ein einziger Laser eine Vielzahl individueller Frequenzen für die Übermittlung von Information erzeugen. Andere Anwendungsbereiche wären die Analyse chemischer Produkte und Atomuhren. „Wir haben ein Patent angemeldet, denn das Potenzial zur weiteren Entwicklung ist vorhanden.“

Frequenzkämme, für deren Entdeckung Theodor Hänsch und John Hall 2005 mit dem Physik-Nobelpreis ausgezeichnet wurden, werden in der Regel mithilfe sehr grosser Laser produziert. „Ihre Erzeugung auf sehr kleinen Chips ist ein interessanter Fortschritt, der Frequenzkämme anwendungsfreundlicher macht“, meint Kippenberg.

(*) V. Brasch et al.: Photonic chip–based optical frequency comb using soliton Cherenkov radiation, Science 10.1126/science.aad4811 (2015).

(Für Medienvertreter als PDF-Datei beim SNF erhältlich: com@snf.ch)

Kontakt
Prof. Tobias J. Kippenberg
Laboratory of Photonics and Quantum Measurements
EPFL
1015 Lausanne
Tel: + 41 21 693 44 28 oder +41 79 535 00 16
(Erreichbar am 7. Jan. ab 11:30 Uhr)
E-Mail: tobias.kippenberg@epfl.ch

Der Text dieser Medienmitteilung steht auf der Website des SNF zur Verfügung:

http://www.snf.ch/de/fokusForschung/newsroom/Seiten/news-160107-medienmitteilung…

Media Contact

Medien - Abteilung Kommunikation idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer