Detaillierter Blick in die Quantenwelt

Peter Zoller IQOQI Innsbruck/M.R.Knabl

Komplexe Vorgänge in der Quantenwelt von Atomen und Molekülen sind nur schwer zu verstehen, und sie in der Natur zu beobachten ist noch viel schwieriger. Deshalb nutzt die Wissenschaft im Labor gut kontrollierte Quantensysteme – sogenannte Quantensimulatoren – um Quantenprozesse zu erforschen. In den vergangenen Jahren wurden programmierbare Quantensimulatoren entwickelt.

Sie verfügen im Vergleich zu einem voll programmierbaren Quantencomputer über einen deutlich beschränkteren Befehlssatz, lassen sich aber auf eine wesentlich größere Zahl von Teilchen skalieren.

In den USA haben Forscher nun einen solchen programmierbaren Quantensimulator dazu verwendet, um sogenannte Quantenphasenübergänge zu studieren. In dem Experiment wurden 51 Atome in optischen Pinzetten („Tweezern”) gefangen und ihre internen Freiheitsgrade mit Lasern manipuliert.

Durch die Ausnützung von Eigenschaften von Rydberg-Zuständen erzeugten die Forscher Wechselwirkungen zwischen den Atomen und realisierten so ein kontrolliertes Quantenvielteilchensystem.

„Interessanterweise kann dieses System in verschiedene Quantenphasen gebracht werden, die alle durch unterschiedliche Quantenphasenübergänge voneinander getrennt sind. Der dynamische Übergang von einer Phase in eine andere ist ein komplexer Prozess“, erklärt Peter Zoller vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Idee experimentell bestätigt

Der Theoretiker Peter Zoller hatte gemeinsam mit Kollegen schon vor Jahren die Hypothese aufgestellt, dass der Übergang zwischen Quantenphasen durch „universelle“ Gesetze und Skalierungen beschrieben werden kann, die nur vom Typ des Quantenphasenübergangs abhängen, nicht aber von mikroskopischen Details des Systems. Diese Vorhersage wurde nun in dem Experiment an der Harvard University eindrucksvoll bestätigt.

„Da in dem Experiment verschiedene Typen von Quantenphasenübergängen zugänglich sind, konnte dies nicht nur bei relativ gut verstandenen Formen von Quantenphasenübergängen untersucht werden, sondern auch bei exotischeren“, erzählt Hannes Pichler.

Der gebürtige Südtiroler hat bei Peter Zoller promoviert und forscht seit 2016 als ITAMP Postdoctoral Fellow an der Harvard University, USA. In enger Kooperation mit Peter Zoller und seinen Innsbrucker Kollegen hat Pichler an der Konzeption des Experiments wesentlich mitarbeitet und gemeinsam mit seinen Kollegen das Quantensystem theoretisch modelliert und die Eigenschaften der verschiedenen Phasenübergänge analysiert.

Die nun in der Fachzeitschrift Nature veröffentlichte Forschungsarbeit entstand in einer Zusammenarbeit von Forschern der Harvard University, des MIT, des Caltech und der Universität Innsbruck sowie des IQOQI Innsbruck und wurde von Mikhail Lukin, Markus Greiner und Vladan Vuletic geleitet.

Peter Zoller
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507-4780
E-Mail: peter.zoller@uibk.ac.at
Web: https://www.uibk.ac.at/exphys/qo/

Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Alexander Keesling, Ahmed Omran, Harry Levine, Hannes Bernien, Hannes Pichler, Soonwon Choi, Rhine Samajdar, Sylvain Schwartz, Pietro Silvi, Subir Sachdev, Peter Zoller, Manuel Endres, Markus Greiner, Vladan Vuletic and Mikhail D. Lukin. Nature 2019 https://doi.org/10.1038/s41586-019-1070-1

https://www.uibk.ac.at/exphys/qo/ – Arbeitsgruppe Peter Zoller

Media Contact

Dr. Christian Flatz Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Zukunft der Robotik ist soft und taktil

TUD-Startup bringt Robotern das Fühlen bei. Die Robotik hat sich in den letzten Jahrzehnten in beispiellosem Tempo weiterentwickelt. Doch noch immer sind Roboter häufig unflexibel, schwerfällig und zu laut. Eine…

Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein

Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur…

EU-Projekt IntelliMan: Wie Roboter in Zukunft lernen

Entwicklung eines KI-gesteuerten Manipulationssystems für fortschrittliche Roboterdienste. Das Potential von intelligenten, KI-gesteuerten Robotern, die in Krankenhäusern, in der Alten- und Kinderpflege, in Fabriken, in Restaurants, in der Dienstleistungsbranche und im…

Partner & Förderer