Das Entstehen von Ordnung

Während die Atome im Anfangszustand (oben) auf einzelnen Gitterplätzen lokalisiert sind, bilden sich während des Phasenübergangs Korrelationen zwischen den Gitterplätzen aus. Im flachen Gitter des Endzustands (unten) würden die Korrelationen nach einer unendlich langsamen Rampe das gesamte Gitter verbinden; aufgrund der endlichen Geschwindigkeit der experimentellen Rampe erreichen sie jedoch nur eine endliche Reichweite. (Grafik: Quantum Optics Group, LMU)

Wenn Wasser gefriert, so ordnen sich die anfangs ungeordneten Wassermoleküle in einem mehr oder weniger regelmäßigen Eiskristall an; sie gehen bei diesem Phasenübergang aus einem ungeordneten in einen geordneteren Zustand über. Dabei ergibt sich sofort eine wichtige Frage: Wie lange dauert es, bis jedes Molekül seinen Platz gefunden hat?

Die Antwort darauf spielt zum Beispiel in der Metallurgie eine wichtige Rolle, da die Größe der entstehenden Domänen mit darüber entscheidet, wie flexibel oder brüchig Stahl ist. Während diese Frage in klassischen Systemen bereits umfassend untersucht wurde, so ist sie in der Quantenmechanik noch vergleichsweise Neuland.

Mit Hilfe von ultrakalten Atomen in optischen Gittern ist es einem Forscherteam um Ulrich Schneider und Immanuel Bloch am Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians-Universität München, der Freien Universität Berlin, sowie des Consejo Superior de Investigaciones Científicas in Madrid nun gelungen, diese Situation im Labor nachzustellen und unter präzisen Bedingungen auszumessen. Ihre Erkenntnisse ermöglichen es, quantitative Vorhersagen zu Vorgängen in physikalischen Systemen zu treffen und wurden am 9. März 2015 in den „Proceedings of the National Academy of Sciences“ publiziert.

Die entscheidende Frage bei allen Phasenübergängen ist: Wie kommt das System eigentlich von einer Phase in eine andere? Insbesondere für Quantensysteme gibt es darauf keine einfache Antwort, da die Dynamik typischerweise deutlich komplexer ist als die Phasen selbst. Dazu kommt, dass die Reaktionszeit des Systems in der Nähe des Phasenübergangs immer länger wird, das System also immer „zäher“ reagiert, da es sich immer stärker umordnen muss.

Wie schnell diese Umordnung stattfinden kann, also wie schnell sich die dazu nötigen Korrelationen zwischen den Teilchen bilden und ausbreiten können, ist ein wichtiges Problem der Physik. Anschaulich kann man sich dieses System ähnlich einer Ansammlung vieler kleiner Pfeile vorstellen, die am Anfang ungeordnet sind, also in alle möglichen Richtungen weisen. Jenseits des Phasenübergangs wollen die Pfeile dann jeweils die gleiche Richtung wie ihre Nachbarn haben. Damit möchten sie ultimativ alle in die gleiche Richtung zeigen, aber in welche? Da im Prinzip alle Richtungen gleichwertig sind, so müssen sie sich die Atome auf eine Richtung einigen. Wie schnell kann das passieren?

Dieses Problem, das theoretische arbeitende Physiker schon seit langem beschäftigt, wurde in dieser neuen Arbeit unter extrem genau kontrollierten Bedingungen im Labor nachgestellt und experimentell vermessen. Basis sind hier künstliche Vielteilchensysteme, in denen tausende von ultrakalten Atomen in einem Lichtgitter anfangs auf ihrem Platz fest gehalten werden. In diesem Mott-Isolator gibt es also keine Korrelationen zwischen Gitterplätzen.

Anschließend wird dann die Kopplung zwischen benachbarten Gitterplätzen kontrolliert erhöht, bis ein Quantenphasenübergang in einen Zustand stattfindet, in dem die Teilchen frei durch das Gitter fließen. Diese Supraflüssigkeit ist im Gleichgewicht hochgradig geordnet: die Teilchenwellen schwingen im Gleichtakt (sind also kohärent), und ihre Eigenschaften sind über weite Entfernungen stark korreliert. Die Dynamik des Übergangs vom Mott-Isolator in die Supraflüssigkeit haben die Münchner Physiker jetzt erstmals quantitativ vermessen.

Sie konnten im Experiment im Detail nachverfolgen, wie sich die langreichweitigen Korrelationen ausbreiten, und die Messergebnisse mit theoretischen Modellen vergleichen. Diesen Untersuchungen zufolge sind die bislang verwendeten Modelle für real existierende Systeme zu einfach und müssen um (noch unbekannte) Beiträge ergänzt werden.

Zusätzlich konnten die experimentellen Resultate für eindimensionale Systeme – also eine Kette von Gitterplätzen – mit numerischen Rechnungen auf Supercomputern verglichen werden, die von dem Team um Jens Eisert an der Freien Universität Berlin durchgeführt wurden. Dieser Vergleich ermöglichte dabei einen unabhängigen Test des experimentellen Systems, welchen dieses mit Bravour bestanden hat. Das Experiment konnte dann für höherdimensionale Systeme (2D und 3D) wiederholt werden, in denen mit gegenwärtigen Rechnern keine numerischen Simulationen möglich sind.

Die dabei gewonnenen experimentellen Resultate in höheren Dimensionen können nun verwendet werden, um neue theoretische Ansätze zu testen und damit unser Verständnis der Dynamik von Vielteilchensystemen fundamental voranzubringen. Damit wurde in dieser Arbeit nicht nur ein physikalisches Problem neu beleuchtet, sondern gleichzeitig ein Paradigma neu ausgelotet: Das der Quantensimulation, in dem komplexe Quantensysteme im Labor unter sehr präzisen Bedingungen nachgestellt werden, um so ihr Verhalten extrem genau nachmessen zu können und damit die Basis für ein neues, tieferes Verständnis zu liefern. [U.S./O.M.]

Originalveröffentlichung:

Simon Braun, Mathis Friesdorf, Sean S. Hodgman, Michael Schreiber, Jens Philipp Ronzheimer, Arnau Riera, Marco del Rey, Immanuel Bloch, Jens Eisert, and Ulrich Schneider
Emergence of coherence and the dynamics of quantum phase transitions
Proceedings of the National Academy of Sciences, 9. März 2015

Kontakt:

Dr. Ulrich Schneider
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 / 2180 -6129
E-Mail: ulrich.schneider@physik.uni-münchen.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Media Contact

Dr. Olivia Meyer-Streng Max-Planck-Institut für Quantenoptik

Weitere Informationen:

http://www.mpq.mpg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mit Lasern in eine mobile Zukunft

Das EU-Infrastrukturprojekt NextGenBat hat ambitionierte Ziele: Die Performance von mobilen Energiespeichern wie Batterien soll mit neuen Materialien und laserbasierten Herstellungsverfahren enorm gesteigert werden. Zum Einsatz kommt dabei ein Ansatz zur…

Aufbruch in die dritte Dimension

Lassen sich auch anspruchsvolle Metallbauteile in Serie produktiv und reproduzierbar 3D-drucken? Forschende aus Aachen bejahen diese Frage: Sie transferierten am Fraunhofer-Institut für Lasertechnik ILT das zweidimensionale Extreme Hochgeschwindigkeits-Laserauftragschweißen EHLA auf…

Motorenforscher starten Messkampagne mit klimaneutralem Wasserstoff

„Wasserstoff und daraus erzeugte synthetische Kraftstoffe werden ein zentraler Baustein der maritimen Energiewende sein“, davon ist Professor Bert Buchholz von der Fakultät für Maschinenbau und Schiffstechnik der Universität Rostock fest…

Partner & Förderer