Von Brennstoffzellen bis Diabetiker-Tests

Dreidimensionaler photonischer Kristall aus Silber mit chiraler Struktur. Die winzigen Draht-Elemente sind nur 100 Nanometer breit. Foto: Universität Stuttgart, 4. Physikalisches Institut<br>

Metamaterialien werden meist mit optischen Tarnkappen in Verbindung gebracht, die beispielsweise militärisches Gerät unsichtbar machen. Die neuartigen, aus Nanometer kleinen Metallpartikeln bestehenden künstlichen Strukturen lassen sich aber auch für Sensoren nutzen, die Wasserstoff in der Umgebung von Brennstoffzellen oder Glucose bei Diabetikern aufspüren können. Bisher ist der Einsatzbereich dieser Metamaterialien jedoch durch die geringe Größe begrenzt.

Wissenschaftler um Prof. Harald Giessen vom 4. Physikalischen Institut der Universität Stuttgart und Prof. Paul V. Braun von der University of Illinois/USA wollen jetzt den Sprung vom Labor zur Anwendung wagen und Metamaterialien in hoher Qualität im Quadratzentimetermaßstab herstellen.

Noch werden großflächige Strukturen Schicht für Schicht mit dem Laser oder einem Elektronenstrahl geschrieben, das dauert Stunden und ist teuer. „Derzeit sind optische Metamaterialien auf Labormuster von Größen unter einem Quadratmillimeter limitiert. Wir möchten diese Grenzen überwinden, die bisher dem praktischen Einsatz von Metamaterialien entgegenstehen.“

So beschreibt Prof. Harald Giessen das Ziel des Projekts mit dem Titel „Großflächige dreidimensionale Metamaterialien für optische und Sensor-Anwendungen”, das Metamaterialien von der Grundlagenforschung heraus in die Welt der Anwendungen führen soll. Das Vorhaben wird von der Baden-Württemberg Stiftung im Rahmen des Programms „Internationale Spitzenforschung“ mit 500.000 Euro gefördert.

Für die effektivere Herstellung von Metamaterialien testen die Wissenschaftler ganz unterschiedliche Ansätze, darunter ein stromloses Verfahren zur Metallabscheidung, das sich mit relativ einfachen Geräten und ohne Reinraum realisieren lässt. Andere Wege sind die Phasenplatten-Holographie sowie die Funktionalisierung von Oberflächen mit Hilfe von Laserstrahlen, die in einem bestimmten Winkel auf die Strukturen gerichtet werden. Einfache, teilweise noch zweidimensionale Strukturen lassen sich mit all diesen Ansätzen schon herstellen.

Doch gerade für Sensoren wären dreidimensionale „chirale“ Strukturen interessant, die sich Spiralen gleich nach rechts und links drehen. Die Stuttgarter Physiker und das Team um den Materialwissenschaftler aus Illinois ergänzen sich dabei hervorragend. „Stuttgart bringt Stärken in der Optik ein, Paul Braun die Chemie“, bringt es Giessen auf den Punkt. Als erste Anwendungen streben die Wissenschaftler ganz neuartige nanostrukturierte optische Bauelemente mit einer aktiven Fläche von mindestens einem Quadratzentimeter an, die zum Beispiel Chemiker benutzen können, um die räumliche Struktur von neuen Arzneimitteln zu erforschen. Darüber hinaus entwickeln die Forscher optische Sensorkonzepte für verschiedene Chemikalien, so zum Beispiel einen Detektor zur Messung von Wasserstoff, der unter anderem für die Energieforschung von großem Interesse ist.

Erleichterung für Diabetespatienten
Schon an der Schwelle zum Praxistest steht ein neuartiger, optischer Glucosesensor, mit dem Diabetespatienten über die Tränenflüssigkeit den Zuckergehalt im Blut bestimmen können, ohne sich zu pieksen. Dieses Projekt führen die Stuttgarter Physiker gemeinsam mit Prof. Cristina Tarin vom Institut für Systemdynamik der Uni im Rahmen des Interuniversitären Zentrums für Medizinische Technologie Stuttgart-Tübingen durch. Als Messgerät fungiert eine Kontaktlinse, auf die eine Hydrogel-Schicht mit winzigen Nanostrukturen aus Gold aufgebracht ist; ausgelesen werden die Messwerte mit einem infraroten Laserstrahl. Jetzt gilt es, die bisher auf etwa fünf Tage begrenzte Lebensdauer der Kontaktlinsen zu erhöhen und die Herstellungskosten auf ein Maß zu senken, das die für Patienten so segensreiche Neuerung auch erschwinglich macht. Hierzu entwickeln die Forscher einerseits das Hydrogel weiter, in das die Goldpartikel eingebettet sind. Ein anderer, langfristig aussichtsreicherer Weg wäre es, chirale Nanostrukturen direkt großflächig auf die Kontaktlinse aufzubringen, so dass das Hydrogel überflüssig würde.
Ihr Ansprechpartner:
Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut
Tel. 0711/685-65111, E-Mail: giessen@physik.uni-stuttgart.de

Ansprechpartner für Medien

Andrea Mayer-Grenu idw

Weitere Informationen:

http://www.uni-stuttgart.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Kampf gegen Mikroplastik

Neues Verfahren zur Herstellung von Dämmstoff aus Kunststoffabfällen. Ein Schaumstoff zur akustischen und thermischen Dämmung von Gebäuden, der aus Mikroplastik im Meer gewonnen werden kann: Mit dieser Innovation will der…

Molekulare „Matrjoschka“ löst chemisches Problem

Dreischaliger Nano-Reaktor für die Funktionaisierung von Fulleren. Einem deutsch-katalanischen Forschungsteam ist es erstmals gelungen, eine mehrschalige „Matrjoschka“-Architektur für die chemische Synthese zu verwenden. Die Chemikerinnen und Chemiker aus Ulm und…

Große Moleküle in lebende Zellen transportiert

Forscher erzielen Durchbruch ins Zellinnere … Es ist eine der großen pharmakologischen Fragen: Wie bringt man große funktionale Biomoleküle wie Proteine oder Antikörper in eine Körperzelle? Die Verknüpfung mit zellpenetrierenden…

Partner & Förderer