„Bethe Strings“ als Vielteilchen-Quantenzustände erstmals experimentell nachgewiesen

In SrCo₂V₂O₈ bilden die Kobalt-Ionen (Co²⁺) im Inneren einer Kette aus kantenverknüpften Sauerstoff-Oktaedern eine quasi-eindimensionale Elekronenspin-Kette mit Spin S = ½. © Universität Augsburg/IfP/EP V

„Bethe Strings“ sind Anregungen stark gebundener Elektronen-Spins in eindimensionalen Quantenspinsystemen. Benannt sind diese Quantenspinzustände nach dem Physiker Hans Bethe, der sie 1931 erstmals theoretisch beschrieben hat. Erstmals experimentell nachgewiesen wurden „Bethe Strings“ jetzt von den Augsburger Physikern Prof. Dr. Alois Loidl und Dr. Zhe Wang, die gemeinsam mit ihren Kooperationspartnern aus Berlin, Dresden, Mumbai, Nijmegen und San Diego darüber im international renommierten Journal „Nature“ (Ausgabe vom 8. Februar 2018) berichten.

1933 vor den Nationalsozialisten in die USA geflohen und als Leiter der Theorieabteilung in Los Alamos an der Entwicklung der Atombombe mitwirkend, galt Hans Bethe als einer der führenden Kernphysiker.

Den Physik-Nobelpreis erhielt er 1961 für die Theorie über die Energieerzeugung in Sternen. In seiner frühen wissenschaftlichen Karriere befasste sich Bethe allerdings intensiv mit Festkörperphysik, insbesondere mit der Elektronentheorie von Metallen.

So veröffentlichte er 1931 in der „Zeitschrift für Physik“ einen Aufsatz mit dem Titel „Eigenwerte und Eigenfunktionen der linearen Atomkette“ über Quantenspinzustände in einer Dimension. Auf der Basis einer Theorie von Werner Heisenberg und mit dem sogenannten Bethe-Ansatz, einer Methode, die theoretisch später vielfältig weiterentwickelt wurde und heute ein wichtiges mathematisches Werkzeug der statistischen Physik ist, gelang ihm eine exakte Lösung des eindimensionalen quantenmechanischen Vielteilchensystems.

Bei einem solchen System handelt es sich um eine eindimensionale Kette von Atomen auf festen Positionen, die einen Elektronen-Spin S = ½ tragen. Vielteichen-„String“-Zustände entsprechen Anregungen gekoppelter quantenmechanischer Spins, also magnetischer Eigendreh-Momente der Elektronen, die fest aneinander gebunden sich nahezu frei in der eindimensionalen Kette bewegen können.

Das Fehlen passender eindimensionaler Materialien und geeigneter experimenteller Methoden machte die experimentelle Überprüfung derartiger Vielteilchen-„String“-Zustände und den Nachweis ihrer Anregungen bislang unmöglich. Extreme Fortschritte in der Materialsynthese einerseits und die Entwicklung von optischer Spektroskopie im Terahertz-Frequenzbereich in sehr hohen Magnetfeldern andererseits ermöglichten nun erstmals diesen experimentellen Nachweis.

In einem ersten Schritt wurden am Helmholtz-Zentrum in Berlin und im Hochfeld-Magnetlabor des Helmholtz-Zentrums Dresden-Rossendorf SrCo₂V₂O₈-Kristalle synthetisiert und charakterisiert. Diese Kristalle, in denen die Kobalt-Ionen eine eindimensionale Spinkette mit Spin = ½ bilden, wurden dann von Loidl und Wang im Hochfeld-Magnetlabor der Radboud-Universiteit in Nijmegen in einem weiten Magnetfeldbereich von 4 bis 28 Tesla (zum Vergleich: das Erdmagnetfeld in Mitteleuropa hat eine Stärke von ungefähr 0.00005 Tesla) untersucht. Die dabei entdeckten „String“-Anregungen konnten schließlich von Wissenschaftlern der University of California in San Diego mit dem Bethe-Ansatz berechnet und exakt beschrieben werden.

„Der von uns gelieferte Beweis der Existenz und der Stabilität dieser exotischen Spinstrukturen ist zunächst mit Blick auf die weitere Erforschung der Spindynamik im Bereich des Quantenmagnetismus ein enormer Fortschritt“, erläutert Loidl. Dies gelte darüber hinaus aber auch für zahlreiche weitere Bereiche, für die die Anwendung und Weiterentwicklungen des Bethe-Ansatzes von herausragender Bedeutung seien – angefangen bei kalten Quantengasen über die String-Theorie in der Elementarteilchenphysik bis hin zu Problemen in Quanten-Informationssystemen.

Publikation:

Zhe Wang, Jianda Wu, Wang Yang, Anup Kumar Bera, Dmytro Kamenskyi, A.T.M. Nazmul Islam, Shenglong Xu, Joseph Matthew Law, Bella Lake, Congjun Wu, Alois Loidl: Experimental Observation of Bethe Strings. Nature 554, 219–223 (08 February 2018); DOI: 10.1038/nature25466; http://www.nature.com/articles/nature25466

Ansprechpartner an der Universität Augsburg:

Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/Elektronische Korrelationen und Magnetismus
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Dr. Zhe Wang
derzeit Helmholtz-Zentrum Dresden-Rossendorf
Telefon 0351/260-2691
zhe.wang@hzdr.de

Media Contact

Klaus P. Prem idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-augsburg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer