BESSY II: Millionenfach schnellerer Wechsel von zirkular polarisierten Lichtpulsen

Dieses Bild zeigt ein Röntgenbild des Elektronenstrahls im TRIB-Modus, bei dem zwei Bahnen koexistieren: die reguläre Bahn und die zweite, die sich um diese Bahn windet und sich erst nach drei Umdrehungen schließt. © F. Armborst/K. Holldack

In Synchrotronstrahlungsquellen wie BESSY II kreisen Elektronenpakete mit nahezu Lichtgeschwindigkeit im Speicherring. Dabei werden sie durch periodische Magnetstrukturen (Undulatoren) dazu gebracht extrem helle Lichtpulse mit besonderen Eigenschaften abzugeben.

Eine dieser Besonderheiten ist die Polarisation: Mit speziellen elliptischen Undulatoren können linear aber auch zirkular polarisierte Lichtpulse erzeugt werden. Magnetische Strukturen in Materialien reagieren unterschiedlich auf zirkular polarisiertes Licht: Je nachdem, ob die Händigkeit (Helizität) der Röntgenpulse rechts- oder linksdrehend ist absorbieren sie diese Strahlung mehr oder weniger.

Dies nutzt man seit den 80er Jahren in sogenannten XMCD-Experimenten (X-ray Circular Dichroism) aus, um statische aber auch dynamische Veränderungen in magnetischen Materialien zu untersuchen oder auch magnetische Nanostrukturen auf Oberflächen abzubilden.

Insbesondere für solche abbildenden Verfahren wünscht sich die Nutzergemeinde an Synchrotronstrahlungsquellen seit langem die Möglichkeit die Helizität des Lichts schnell umzuschalten, vor Allem weil sich daraus direkt ein magnetischer Bildkontrast ergibt, der z.B. Bits in magnetischen Datenspeichern sichtbar und quantifizierbar macht.

In den für BESSY II typischen elliptischen Undulatoren (APPLE II), die von der Gruppe um Johannes Bahrdt entwickelt wurden, wird die Helizität des Lichtes durch eine mechanische Verschiebung von meterlangen Anordnungen von starken Permanentmagneten geschaltet, ein Vorgang, der teilweise Minuten dauert.

Die neue Methode basiert dagegen auf der Kombination solcher Undulatoren mit einem speziellen Orbit des Elektronenstrahls im Speicherring – der durch die sogenannten TRIBs (transverse resonance island buckets) erzeugt wird. Die TRIBs hatte der HZB-Beschleunigerexperte Dr. Paul Goslawski erstmals an BESSY II experimentell untersucht.

Während der Weg der Elektronen im Speicherring sich normalerweise nach einem Umlauf schließt, laufen im TRIBs-Modus die Elektronen bei aufeinanderfolgenden Umläufen auf verschiedenen Bahnen und können so Röntgenpulse von jeweils anderen Magnetfeldanordnungen emittieren. Diese Idee geht auf Dr. Karsten Holldack und Dr. Johannes Bahrdt zurück.

Dass sie tatsächlich funktioniert, konnten Holldack und Bahrdt kürzlich mit Hilfe des vorhandenen Doppelundulators UE56-2 bei BESSY II im Rahmen eines Pilotexperimentes: zeigen: Beim Durchgang durch eine speziell vorbereitete Magnetanordnung dieses Doppel-Undulators gaben in der Tat die Elektronenpakete aus unterschiedlichen Bahnen im TRIBs-Modus Röntgenphotonen mit derselben Wellenlänge aber entgegengesetzter zirkularer Polarisation ab.

Dadurch können nun prinzipiell XMCD-Signale von magnetischen Proben im Zeitabstand von nur einer Mikrosekunde mit abwechselnd rechts- und dann linkszirkular polarisierten Lichtpulsen untersucht werden.

Im Pilotexperiment wurden die XMCD-Signale von einer magnetischen Probe (Nickel in Permalloy) von Umlauf zu Umlauf detektiert und der schnelle (MHz) Helizitätswechsel konnte eindeutig nachgewiesen werden.

Mit neuen, für diesen Zweck maßgeschneiderten, Undulatoren könnten bei BESSY II im TRIBs-Modus spezielle Beamlines mit ultraschnellem Helizitätswechsel angeboten werden. Perspektisch sind sogar Wechsel im Nanosekundenabstand denkbar. „Dass die TRIBs-Entwicklung mit den Two-Orbits jetzt auch noch ganz neue Experimente an BESSY II ermöglicht, freut uns sehr“, sagt Goslawski. Dies wäre aber auch eine attraktive Option für BESSY III. Die Ergebnisse wurden nun bei Nature Communications Physics veröffentlicht.

Dr. Karsten Holldack, karsten.holldack@helmholtz-berlin.de

Publiziert in Nature Communications Physics (2020): Flipping helicity of X-rays from an undulator at unprecedented speed

Karsten Holldack, Christian Schüßler-Langeheine, Paul Goslawski, Niko Pontius, Torsten Kachel, Felix Armborst, Markus Ries, Andreas Schälicke, Michael Scheer, Winfried Frentrup and Johannes Bahrdt

DOI : 10.1038/s42005-020-0331-5

Was es mit dem 2. Orbit für BESSY II auf sich hat, erklären die Physiker in diesem kurzen Video: https://www.youtube.com/watch?v=toT6_MTcwhE&t=34s

Media Contact

Dr. Antonia Rötger Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Informationen:

http://www.helmholtz-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Gedächtnistraining für das Immunsystem

Nach einer Infektion merkt sich das Immunsystem den Krankheitserreger und kann deshalb bei einer erneuten Infektion schnell reagieren. Wissenschaftler der Universität Würzburg haben jetzt neue Details dieses Vorgangs entschlüsselt. Wenn…

Wundheilende Wellen

Wie fragen Zellen in unserem Körper nach dem Weg? Selbst ohne eine Karte, die ihnen den Weg weist, wissen sie, wohin sie gehen müssen, um Wunden zu heilen und unseren…

Treffen der Generationen im Herzen der Galaxis

Astronomen finden eine bisher unbekannte Population von Sternen nahe dem Zentrum der Milchstraße Das Zentrum unserer Heimatgalaxie gehört zu den sternreichsten Gebieten des bekannten Universums. Innerhalb dieser Region haben nun…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close