Nanolichter abbilden mit neuartigem Vektor-Nahfeldmikroskop

Das erfolgreiche Forscherteam mit Physikern der Seoul National University (Korea) und der Universität Oldenburg berichtet über seine Arbeit in der Januar-Ausgabe der Fachzeitschrift Nature Photonics (Bd. 1, 53, 2007).

„Die Helligkeit solcher Nahfelder kannten wir vorher auch schon, deren Richtung blieb uns jedoch meist verborgen. Diese ist jedoch entscheidend für eine ganze Reihe von Energiewandlungsprozessen in Nanostrukturen, sowohl in optoelektronischen Bauelementen wie Solarzellen oder Leuchtdioden wie auch in neuartigen Biosensoren“, sagt der Oldenburger Wissenschaftler Prof. Dr. Christoph Lienau, der diese Untersuchung zusammen mit Prof. Dai-Sik Kim von der Seoul National University in Korea geleitet hat.

Es ist bekannt, dass Licht aus elektromagnetischen Wellen besteht, die sich mit hoher Geschwindigkeit durch den Raum ausbreiten und deren Schwingungsrichtung, die optische Polarisation, leicht mit Polarisatorkristallen vermessen werden kann. In der Nähe von Nanostrukturen, wie sie heute eine Schlüsselrolle in Physik, Chemie und Materialwissenschaften spielen, ist dies alles ganz anders. In solchen Strukturen mit Abmessungen von wenigen Nanometern – ein Nanometer (nm) ist ein Milliardstel Meter – haftet das Licht als „optisches Nahfeld“ an den Nanopartikeln und die Polarisationsrichtung ändert sich stark von Ort zu Ort. Der oldenburgisch-koreanischen Forschergruppe gelang nun die Entwicklung eines Nahfeld-Vektor-Mikroskops, mit dem erstmals auch die Richtung des Lichtfeldes abgebildet werden kann.

Der Trick sei einfach, aber clever, sagt der spanische Physiker Prof. Garcia-Vidal, der sich in Nature Photonics über die Arbeit seiner Kollegen äußert (Bd. 1, 13, 2007). In dem Vektor-Mikroskop wird das optische Nahfeld an einer kleinen Gold-Nano-Kugel gestreut und aus der Polarisation des gestreuten Lichts kann dann auf die Orientierung des Nahfeldes geschlossen werden. Klebt man die Gold-Kugel am Ende einer Glasfaserspitze fest, so können zurzeit mikroskopische Bilder der Nahfeldpolarisation mit einer räumlichen Auflösung von etwa 50 nm aufgenommen werden.

Die Physiker in der neuen Arbeitsgruppe Ultraschnelle Nano-Optik am Institut für Physik der Universität Oldenburg nutzen die neue Technik derzeit, um die optischen Nahfelder von metallischen und halbleitenden Nanostrukturen besser zu verstehen und hieraus neue Nanolaser zu entwickeln.

Kontakt: Prof. Dr. Christoph Lienau, Institut für Physik, Arbeitsgruppe Ultraschnelle Nano-Optik, Universität Oldenburg, Tel. 0441/798-3485, E-Mail: christoph.lienau@uni-oldenburg.de

Media Contact

Gerhard Harms idw

Weitere Informationen:

http://www.uni-oldenburg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer