Aufruhr auf der Nanoskala – Topologische Isolatoren leisten Widerstand

Die Abbildung zeigt, wie sich die Spannung an der Oberfläche der Probe verändert: Die Stufenkanten wirken wie kleine Widerstände und führen so zu Spannungssprüngen. Bildnachweis: nature publishing group

Einige Bauteile elektronischer Schaltungen sind heute nur noch 14 Nanometer groß. Doch hier kommt der Trend zu immer kleineren Komponenten an seine Grenze:

In diesen winzigen Dimensionen tauchen zunehmend Quanteneffekte auf, die die klassische, siliziumbasierte Technik unmöglich machen. Für zusätzliche Probleme sorgt die Wärme in den dicht gepackten Schaltungen.

Forscher setzen daher ihre Hoffnungen auf eine neue Materialklasse, die erst vor wenigen Jahren entdeckt wurde: die Topologischen Isolatoren. Während diese im Innern isolierend sind, leiten sie gleichzeitig auf ihrer Oberfläche elektrischen Strom. Die bisher anerkannte Theorie besagte, dass diese Leitfähigkeit nicht durch Oberflächendefekte beeinträchtigt wird.

Die Physiker Sebastian Bauer und Dr. Christian Bobisch wiesen nun nach, dass dies sehr wohl der Fall ist: Sie gehören zu den wenigen Wissenschaftlern, die die Rastertunnelpotentiometrie beherrschen – eine Methode, die mit atomarer Genauigkeit gleichzeitig misst, wie eine Oberfläche beschaffen ist und wo Strom entlangfließt.

In ihrer Probe aus Bismuthselenid (Bi2Se3) konnten sie zeigen, dass jede nanometerhohe Kante einer rauen Oberfläche wie ein winziger Widerstand wirkt. Insgesamt reduzieren sie die Leitfähigkeit der ganzen Schicht.

Bobisch interpretiert seine Ergebnisse keineswegs als Rückschlag, sondern als zusätzlichen Vorteil: „Wir können nun das Potenzial der Topologischen Isolatoren in künftigen Bauelementen realistischer einschätzen. Und es ergeben sich ganz neue Möglichkeiten. Es ist denkbar, mit diesem Wissen die Oberfläche bewusst zu designen – wo soll viel Strom fließen, wo weniger?“ So würden sich Streuverluste verringern und damit automatisch auch die Erwärmung.

Originalpublikation:
Bauer, S. and Bobisch, C. A. Nanoscale electron transport at the surface of a topological insulator. Nat. Commun. 7:11381 doi: 10.1038/ncomms11381 (2016).

Weitere Informationen:
Dr. Christian Bobisch, Fakultät für Physik, Tel. 0203/379-2558, christian.bobisch@uni-due.de

Redaktion: Birte Vierjahn, Tel. 0203/379-8176, birte.vierjahn@uni-due.de

Media Contact

Katrin Koster idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer