Spezialfarbstoff erlaubt völlig neue Einblicke ins Gehirn
Nervenzellen kommunizieren über Botenstoffe, so genannte Neurotransmitter. Einer davon ist das Glyzin, eine Aminosäure, die in fast allen Proteinen vorkommt. Glyzin übernimmt im Gehirn eine Doppelfunktion: Einerseits kann es die Aktivität einzelner Nervenzellen kurzzeitig hemmen. Andererseits kann es die elektrische „Verdrahtung“ aber auch langfristig beeinflussen – ein Vorgang, der etwa beim Lernen eine Rolle spielt.
Wie diese Funktionen im Detail zusammenspielen, weiß man bislang nur sehr grob. Ein Grund dafür ist, dass man Glyzin-Signale in verschiedenen Bereichen des Gehirns bisher nicht direkt optisch messen konnte. „Wir wissen also zum Beispiel nicht, auf welche Reize hin welche Zelle wieviel Glyzin ausschüttet sowie wo und wie schnell das passiert“, erklärt Prof. Dr. Christian Henneberger vom Institut für Zelluläre Neurowissenschaften der Universität Bonn.
Der optische Messfühler könnte das ändern. Entwickelt wurde er von den Projektpartnern der Australian National University in Canberra im Labor von Prof. Colin Jackson. Er besteht aus zwei Farbstoffen, die bei räumlicher Nähe Energie aufeinander übertragen können. Diese sind an einem Proteingerüst befestigt, das seinerseits an Glyzin binden kann.
Wenn das passiert, ändert das Protein seine Gestalt, so dass sich die Farbstoffe voneinander entfernen. Die Energieübertragung wird damit verringert, und das Sensormolekül ändert seine Farbe. „Es gab bisher keine Möglichkeit, die Aktivität von Glyzin im Hirngewebe zu visualisieren – das können wir jetzt tun“, sagt Prof. Jackson.
„Der Sensor ist hochspezifisch für Glyzin“, betont Prof. Henneberger. „Mit ihm können wir daher die Ausschüttung dieses wichtigen Neurotransmitters in Echtzeit unter dem Mikroskop verfolgen.“ Die Bonner Arbeitsgruppe hat auf diese Weise bereits diverse Hypothesen bestätigt, für die es bislang nur indirekte Belege gab. In einem ihrer Versuche reizten sie beispielsweise Hirngewebe mit elektrischen Pulsen. Sie simulierten damit in vereinfachter Form eine Situation, wie sie auch beim Lernen auftritt.
„Wir konnten zeigen, dass durch diese Stimulation Glyzin ausgeschüttet wird“, erklärt der Neurowissenschaftler. „Wir wissen, dass durch derartige Reize manche elektrische Verbindungen dauerhaft gestärkt und andere langfristig heruntergefahren werden. Es ist also wahrscheinlich, dass die Ausschüttung von Glyzin dabei eine Rolle spielt.“
Die Wissenschaftler planen nun, die Mechanismen der Glyzinfreisetzung bei Lernvorgängen mithilfe des neuen Sensors weiter im Detail zu untersuchen. Außerdem erhoffen sich die Forscher neue Erkenntnisse zu Hirnerkrankungen, wie zum Beispiel der Epilepsie.
Publikation: William H. Zhang, Michel K. Herde, Joshua A. Mitchell, Jason H. Whitfield, Andreas B. Wulff, Vanessa Vongsouthi, Inmaculada Sanchez-Romero, Polina E. Gulakova, Daniel Minge, Björn Breithausen, Susanne Schoch, Harald Janovjak, Colin J. Jackson & Christian Henneberger: Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS; Nature Chemical Biology; DOI: 10.1038/s41589-018-0108-2
Kontakt für die Medien:
Prof. Dr. Christian Henneberger
Institut für Zelluläre Neurowissenschaften
Universitätsklinikum Bonn
Telefon: +49(0)228/287-16304
E-Mail: christian.henneberger@uni-bonn.de
Prof. Colin Jackson
Research School of Chemistry
ANU College of Science / Australien
Telefon: +61 2 6125 8325
E-Mail: colin.jackson@anu.edu.au
Media Contact
Alle Nachrichten aus der Kategorie: Medizin Gesundheit
Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.
Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.
Neueste Beiträge
Datensammlung für Tsunami-Frühwarnsysteme
Expedition MSM132 erforscht vulkanische Risiken in der Ägäis. Ein internationales Team von Forschenden ist heute mit der MARIA S. MERIAN in die Ägäis aufgebrochen, um das Vulkansystem Kolumbo bei Santorini…
Auf den Spuren des Megaerdbebens von 2011
Was war die Ursache des großen Tōhoku-Erdbebens von 2011, und wie können wir geologische Prozesse besser verstehen, um langfristig Küsteninfrastruktur zu schützen – zum Beispiel vor einem Tsunami wie vor…
Rettungsinseln für Wildbienen
Die Bedeutung von Steinbrüchen. Ein Forschungsteam der Universität Göttingen, des NABU in Rhede und des Johann Heinrich von Thünen-Instituts in Braunschweig hat die Bedeutung von Kalksteinbrüchen für den Wildbienenschutz untersucht….