Lupe für den Urknall

Sensorchip<br> <br> <b>Fotograf:</b> AG Wermes<br>

Einen äußerst schnellen und genauen Detektor für geladene Teilchen haben Experimentalphysiker der Universität Bonn entwickelt. Der Sensor soll bei Beschleuniger-Experimenten in Genf zum Einsatz kommen, mit denen man Reaktionen studiert, die Bruchteile von Sekunden nach dem Urknall stattgefunden haben. Doch auch in der Medizin lässt sich die Neuentwicklung nutzbringend einsetzen: Zum Beispiel als hochempfindlicher und extrem kontrastreicher „digitaler Röntgenfilm“, der bei verringerter Strahlendosis bessere Ergebnisse liefern kann als herkömmlicher Röntgenfilm.

An der Grenze zwischen Frankreich und der Schweiz gehört der Urknall zum Alltag. Regelmäßig kommt es hier zum gewaltigen Crash: Mit unvorstellbarer Energie schießen die Physiker des Europäischen Labors für Teilchenphysik CERN in einem Detektor von der Größe eines fünfstöckigen Hauses positiv geladene Teilchen, die Protonen, aufeinander. Dabei kommt es zu Reaktionen, wie man sie auch in der Geburtsstunde des Universums hätte beobachten können. „Natürlich können wir im Labor nicht die gleichen heißen Bedingungen erzeugen, wie sie unmittelbar nach dem Urknall herrschten“, schränkt Professor Norbert Wermes ein. „Aber den Ablauf der dabei erfolgten Reaktionen können wir schon unter die Lupe nehmen“.

Die Arbeitsgruppe um den Bonner Experimentalphysiker beteiligt sich am sogenannten ATLAS-Experiment – zusammen mit 150 weiteren Instituten aus insgesamt 34 Ländern. Die Wissenschaftler der Rheinischen Wilhelms-Universität entwickeln Detektoren, mit denen sie weit in die Vergangenheit blicken können. Denn beim Crashtest im Beschleuniger wandeln sich die Kontrahenten in neue Teilchen um, deren Eigenschaften viel über die Anfänge unseres Universums vor etwa 15 Milliarden Jahren verraten. Diese Reaktionsprodukte zu orten, hat sich Wermes’ Arbeitsgruppe auf die Fahnen geschrieben – keine ganz einfache Aufgabe: Pro Sekunde kommt es zu 40 Millionen Zusammenstößen; dabei entstehen jeweils durchschnittlich 1.600 Teilchen, die nachgewiesen werden müssen. Bei der Auswertung will man sich aber in der Regel nur auf die Reaktionsprodukte weniger besonders interessanter Crashs konzentrieren und die anderen ausblenden.

Die Mitarbeiter um Prof. Wermes und Dr. Peter Fischer haben dazu einen Detektor entwickelt, der die entstehenden Teilchen auf einen hundertstel Millimeter genau orten kann -und das gleich vierzigmillionenmal pro Sekunde. Wie der Lichtsensor einer Digitalkamera besteht er aus haarfeinen viereckigen Zellen, die wabenartig nebeneinander angeordnet sind, den sogenannten Pixeln. „Durchquert ein Teilchen einen Pixel, sendet dieser Ort, Zeit und Signalgröße an den Rand der Elektronikchips, wo die Messwerte in schnelle Lichtsignale umgewandelt und durch optische Fasern zum Computer geschickt werden“, erläutert Wermes. In mehreren Ebenen zylinderförmig um den Entstehungsort der Reaktion angeordnet, liefert der Pixel-Detektor so die Punkte einer Teilchenspur, mit deren Hilfe die Urknallforscher rekonstruieren können, was genau sich beim Crash im Beschleuniger zugetragen hat.

Die Geburtswehen des Universums „sind undenkbar weit entfernt von unseren Alltagsnotwendigkeiten“, gibt Wermes zu. Doch gerade aus der Grundlagenforschung erwachsen immer wieder praxisnahe Anwendungen, die sich im Vorfeld nicht absehen ließen. Die Bonner Experimentalphysiker nutzen ihr Know-How inzwischen auch für biomedizinische Anwendungen. „Wir haben unseren Detektor mit einem schnellen Zähler in jeder Pixelzelle gekoppelt – damit rückt der digitale Röntgennachweis in greifbare Nähe.“ Der Detektor zählt die Röntgenquanten, die auf jeden Pixel auftreffen. Aus dem Ergebnis kann der Computer dann ein Röntgenbild berechnen. Anders als bei normalem Filmmaterial gibt es beim digitalen Pendant keine Überbelichtung. Prinzipiell ist es egal, wie viel Strahlung auf einen Pixel trifft – der Zähler zählt alles, was da kommt, vorausgesetzt, er ist schnell genug. „Das Kontrastverhalten unseres Films ist unübertroffen – wahrscheinlich lassen sich daher mit niedrigeren Strahlendosen ähnlich gute Bilder erzielen wie heute auf normalem Röntgenfilm. Außerdem entfällt die Zeit für die Filmentwicklung“, begeistert sich Wermes. Bis das Verfahren die konventionelle Röntgentechnologie ablöst, wird aber wohl noch eine Weile vergehen – schließlich hat der normale Film mehr als einhundert Jahre Vorsprung.


Weitere Informationen: Prof. Dr. Norbert Wermes, Physikalisches Institut der Universität Bonn, Tel.: 0228/73-3533, Fax: 73-3220, E-Mail: wermes@physik.uni-bonn.de

Media Contact

Frank Luerweg idw

Weitere Informationen:

http://www.physik.uni-bonn.de/~wermes

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neutronen-basierte Methode hilft, Unterwasserpipelines offen zu halten

Industrie und private Verbraucher sind auf Öl- und Gaspipelines angewiesen, die sich über Tausende von Kilometern unter Wasser erstrecken. Nicht selten verstopfen Ablagerungen diese Pipelines. Bisher gibt es nur wenige…

Dresdner Forscher:innen wollen PCR-Schnelltests für COVID-19 entwickeln

Noch in diesem Jahr einen PCR-Schnelltest für COVID-19 und andere Erreger zu entwickeln – das ist das Ziel einer neuen Nachwuchsforschungsgruppe an der TU Dresden. Der neuartige Test soll die…

Klimawandel und Waldbrände könnten Ozonloch vergrößern

Rauch aus Waldbränden könnte den Ozonabbau in den oberen Schichten der Atmosphäre verstärken und so das Ozonloch über der Arktis zusätzlich vergrößern. Das geht aus Daten der internationalen MOSAiC-Expedition hervor,…

Partner & Förderer