"Erfolgstyp mit Langstreckenwaffe" – wie sich Helicobacter pylori im Magen breit macht

Helicobacter pylori ist als eines von wenigen Bakterien in der Lage, den menschlichen Magen zu besiedeln – oftmals sehr zum Leidwesen der Betroffenen. Denn dort kann der Erreger Schleimhautentzündungen, aber auch Geschwüre – vor allem im Zwölffingerdarm – und in seltenen Fällen auch bösartige Tumoren verursachen. Entscheidend für den Erfolg des Bakteriums in dieser lebensfeindlichen Umgebung ist das Enzym Urease, das lokal die aggressive Magensäure neutralisiert und so eine Ansiedlung durch Helicobacter ermöglicht. Wie das Team um Professor Dr. Rainer Haas vom Max-von-Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie der Ludwig-Maximilians-Universität (LMU) München in der aktuellen Ausgabe des Fachmagazins Science jetzt zeigt, hängt das Überleben des Erregers auch von einem anderen Faktor ab: das vakuolisierende Zytotoxin (VacA). Die Forscher konnten nachweisen, dass VacA sehr effizient T-Helferzellen und damit eine Reaktion des Immunsystems gegen Helicobacter blockiert. „Das könnte erklären, warum Helicobacter-Infektionen fast immer chronisch verlaufen“, so Haas.

Es ist eine Erfolgsgeschichte, die erst vor relativ kurzer Zeit bekannt wurde. „Helicobacter pylori ist ein außergewöhnlich weit verbreiteter Erreger“, berichtet Haas. „Es besiedelt die Magenschleimhäute von bis zu 50 Prozent der Weltbevölkerung – mit entsprechend negativen gesundheitlichen Folgen.“ Die Übertragung erfolgt direkt durch menschlichen Kontakt, etwa von Eltern auf die Kinder, oder über kontaminierte Speisen. Einmal im Magen angekommen, heftet sich das sehr bewegliche Bakterium an die Magenschleimhaut und nistet sich dort ein. Weil die Wirtszellen von Helicobacter angegriffen und zerstört werden, entwickelt sich lokal eine akute Entzündung. Diese Erkrankung kann über Jahre und Jahrzehnte – in manchen Fällen auch ohne Symptome – verlaufen oder sich zu Geschwüren oder sogar Tumoren entwickeln.

Am Beginn einer chronischen Infektion mit Helicobacter pylori steht wahrscheinlich die Fähigkeit des Bakteriums, eine Vermehrung von T-Helferzellen zu verhindern. Werden diese Immunzellen, die zu den weißen Blutkörperchen gehören, durch eingedrungene Erreger aktiviert, produzieren sie den Immunfaktor Interleukin-2 (IL-2). Dieser wiederum lässt andere Immunzellen reifen und bewirkt deren Vermehrung. Das mündet in eine koordinierte Abwehrreaktion gegen den Erreger und die Bildung spezifischer Antikörper. Helicobacter kann diese Immunantwort sehr effizient unterbinden, und das Protein VacA spielt dabei eine entscheidende Rolle.

Denn VacA blockiert schon den ersten Schritt der Produktion von IL-2, was die gesamte Kaskade der Immunreaktion gegen Helicobacter pylori in einem sehr frühen Stadium unterbricht. Wie das Team um Haas zeigen konnte, verhindert VacA eine Abschrift des IL-2-Gens, was eine Produktion des Proteins unmöglich macht. „Bei VacA handelt es sich um einen neuartigen Typ eines bakteriellen Giftstoffs“, berichtet Bettina Gebert, die als Doktorandin in der Arbeitsgruppe Haas an diesem Thema forscht. „Dieses Protein unterscheidet sich in seiner Sequenz bei den verschiedenen Helicobacter-Stämmen. Es war bisher für seinen Beitrag zur Virulenz des Bakteriums bekannt. Es gibt aber auch Hinweise darauf, dass es nicht nur die Immunantwort blockiert, sondern sogar in den Wirtszellen deren kontrollierten Zelltod, die Apoptose, auslösen könnte.“

Überraschend ist auch, dass VacA teilweise sehr weit entfernt von seinem Produktionsort, dem entsprechenden Bakterium, in der Magenschleimhaut gefunden werden kann. Die Erklärung dafür liegt in den vielseitigen Fähigkeiten des Erregers: Helicobacter kann molekulare Verbindungstüren zwischen den Wirtszellen öffnen und macht damit wohl den Weg frei für VacA, das sich so ungehindert ausbreiten kann. Damit wirkt das Protein wie eine Langstreckenwaffe für das Bakterium und kann auch in einiger Entfernung Schritte einleiten, um eine Immunantwort zu blockieren. „Unsere Ergebnisse sind eine sehr wichtige Etappe bei der Beantwortung der Frage, wie dieses pathogene Bakterium die Wirtszellen zu seinem Vorteil verändern und Krankheiten auslösen kann“, erklärt Professor Haas. „Diese gezielte Blockade des Immunsystems durch Helicobacter könnte ein Nährboden für die Entstehung von Magenkrebs sein.“ (suwe)

Ansprechpartner:

Professor Dr. Rainer Haas
Max-von-Pettenkofer-Institut, LMU
Phone: +49 – 89 – 5160-5255
E-mail: haas@m3401.mpk.med.uni-muenchen.de

Dr. Wolfgang Fischer
Phone: +49 – 89 – 5160-5277
E-mail: schmitt@m3401.mpk.med.uni-muenchen.de
fischer@m3401.mpk.med.uni-muenchen.de

Media Contact

Cornelia Glees-zur Bonsen idw

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer