Sichere Langzeitdatenspeicherung dank optimierter Mikrofilme

Analoge Mikrofilme werden zur Langzeitarchivierung verwendet. Forschungs- und Entwicklungsarbeiten sollen zu einer längeren Langzeitstabilität führen. Fraunhofer IMWS

Digitale Speichermedien wie CDs, DVDs oder USB-Geräte sind nach wie vor kurzlebig. Daten, die auf solchen Trägermedien gespeichert sind, können aufgrund der geringen Haltbarkeit sowie der ständigen rasanten technologischen Weiterentwicklung schon innerhalb weniger Jahre nicht mehr lesbar sein oder müssen mit hohen Kosten und Datenverlusten alle drei bis fünf Jahre auf andere Datenverarbeitungssysteme umgestellt werden.

Daher erfolgt die Langzeitarchivierung sensibler Daten heute noch immer bevorzugt auf anderen Medien. Besonders häufig werden zur Sicherung Mikrofilme auf Silberhalogenidbasis verwendet.

Dabei handelt es sich um auf einer Spule aufgerollte Filmrollen, die stark verkleinerte analoge Abbildungen von Informationen wie Schriften, Fotos oder Zeichnungen enthalten. Mikrofilme sind unabhängig von technologischen Entwicklungen oder komplizierten Eigentumsrechten von Servern sehr langzeitbeständig und haben eine Lebensdauer von mehreren hundert Jahren, wenn sie unter bestimmten Temperatur- und Feuchtigkeitsbedingungen gelagert werden. Zudem unterstützen sie die Speicherung sowohl analoger als auch digitaler Daten und sind absolut fälschungssicher.

Für eine erfolgreiche Langzeitspeicherung müssen die Filme zudem eine Resistenz gegenüber möglichen mechanischen, chemischen und biochemischen Umwelteinflüssen aufweisen. Die Filme bestehen aus einem etwa 100 μm dicken durchsichtigen Filmträger aus Polyethylenterephthalat (PET) mit einer etwa 10–15 μm großen Emulsionsschicht, in der in mehreren Lagen Silberhalogenide enthalten sind.

Die Emulsionsschicht wird nach oben durch eine Gelatineschutzschicht begrenzt und kann nach unten durch eine Lichthofschutzschicht eingeschlossen sein. Diese verschiedenen hauchdünnen Schichten können aber auch störungsanfällig sein:

Sie können sich voneinander ablösen oder durch mikrobiologische Veränderungen beschädigt werden. Auch ein Verkleben der einzelnen Lagen ist möglich, bei deren Auftrennung es zur Zerstörung der Filme und damit zum Datenverlust kommen kann.

Um eine signifikant höhere Langzeitstabilität von Mikrofilmen zu erreichen, führt das Fraunhofer IMWS gemeinsam mit der FilmoTec GmbH Forschungs- und Entwicklungsarbeiten durch. Die Emulsionsschichten werden mit umweltverträglichen Bioziden ausgestattet, um eine längere Haltbarkeit zu erreichen.

Zudem wird die Oberfläche der PET-Unterlage durch atmosphärische Plasmabehandlung mit zugeführten Haftvermittlern auf Stickstoffbasis verändert werden. Somit könnte die Haftung der Emulsionsschichten erheblich verbessert werden.

»Wir wollen die Gelatineschichten der Filme mit geeigneten antimikrobiellen Substanzen wie ätherischen Ölen ausrüsten, die für Menschen ungefährlich sind. Damit könnten wir biochemische Angriffe und Materialzerstörungen durch Mikroorganismen vermeiden«, sagt Dr. Ulrike Hirsch, Projektleiterin am Fraunhofer IMWS. »Unter anderem streben wir an, das häufig verwendete Biozid Phenol zu ersetzen, da dieses stark hautreizend ist und als gesundheitsgefährdend eingestuft wird«, so Hirsch weiter.

Dabei dürfen die fotografischen Eigenschaften der Filme nicht beeinträchtigt werden. Um die entwickelten Materialien für ihren Einsatz adäquat zu bewerten, werden umfangreiche morphologische, chemische und mechanische Untersuchungen durchgeführt.

Im Anschluss an das Forschungsprojekt sollen gemeinsam mit der FilmoTec GmbH die erarbeiteten Technologien in neue Produkte umgesetzt werden: Ziel ist es, Mikrofilme herzustellen, die neben einer sehr guten Haltbarkeit bisher unerreichte Eigenschaften in Bezug auf Speicherkapazität, Schärfe und Auflösung aufweisen.

Der aktuelle Stand der Technik ist eine Pixelgröße von 6×6 μm, die jeweils in vier Graustufen belichtet und rückgelesen werden können. Im Rahmen des Projekts soll nun ein neues Speichermedium auf Basis von Silberhalogenid entwickelt werden, das in der Lage ist, Strukturen im Bereich von 3×3 μm in bis zu 16 verschiedenen Graustufen aufzuzeichnen

https://www.imws.fraunhofer.de/de/presse/pressemitteilungen/mikrofilme.html

Media Contact

Michael Kraft Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Entwicklung von High-Tech Tech-Schattenmasken für höchsteffiziente Si-Solarzellen

Das Technologieunternehmen LPKF Laser & Electronics AG und das Institut für Solarenergieforschung Hameln (ISFH) haben einen Kooperationsvertrag vereinbart: Gemeinsam werden sie Schattenmasken aus Glas von LPKF zur kostengünstigen Herstellung hocheffizienter…

Hitzewellen in den Ozeanen sind menschgemacht

Hitzewellen in den Weltmeeren sind durch den menschlichen Einfluss über 20 Mal häufiger geworden. Das können Forschende des Oeschger-Zentrums für Klimaforschung der Universität Bern nun belegen. Marine Hitzewellen zerstören Ökosysteme…

Was Fadenwürmer über das Immunsystem lehren

CAU-Forschungsteam sammelt am Beispiel von Fadenwürmern neue Erkenntnisse über die Regulation der angeborenen Immunantwort. Alle höheren Lebewesen verfügen über ein Immunsystem, das als biologischer Abwehrmechanismus den Körper vor Krankheitserregern und…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close