Oberflächenchemie führt zu neuen Produkten

Katalysiert durch die Kupferatome der Oberfläche, verändert das Ausgangsprodukt bei einer graduellen Temperaturerhöhung seine chemische Struktur und räumliche Anordnung. (Illustration: Universität Basel, Departement Physik)

Bei zahlreichen nanotechnologischen Anwendungen werden einzelne Moleküle auf Oberflächen platziert, damit sie bestimmte Funktionen erfüllen – beispielsweise elektrischen Strom zu leiten oder ein Lichtsignal auszusenden.

Im Idealfall synthetisieren die Wissenschaftler diese teilweise recht komplexen chemischen Verbindungen direkt auf der Oberfläche. Mithilfe von ultrahochauflösenden Rasterkraftmikroskopen lassen sich die chemischen Reaktionen auf der Oberfläche Schritt für Schritt verfolgen. Die erhaltenen Daten erlauben zudem die Berechnung der genauen molekularen Struktur und der Energetik der Reaktionsschritte.

Mitarbeiter von Prof. Ernst Meyer von der Universität Basel haben für ihre Untersuchungen ein Molekül gewählt, das aus drei Benzolringen besteht, die über eine Dreifachbindung verbunden sind. Bringen die Forscher dieses Molekül auf eine Silberoberfläche auf, ordnen sich die Moleküle selbst zu einem gleichmässigen Muster an – es kommt jedoch nicht zu einer chemischen Reaktion.

Kupfer als Katalysator

Auf einer Kupferoberfläche dagegen reagieren die Moleküle bereits bei einer Temperatur von –123 °C. Katalysiert durch die Kupferatome, nimmt das Ausgangsmolekül zwei Wasserstoffatome auf und verändert seine Struktur und räumliche Anordnung. Wird die Probe auf 200 °C erwärmt, erfolgt ein weiterer Reaktionsschritt, bei dem es zur Ausbildung von zwei Fünferringen kommt.

Eine weitere Temperaturerhöhung auf 400 °C bewirkt die Abspaltung von Wasserstoffatomen und die Ausbildung einer weiteren Kohlenstoff-Kohlenstoff-Bindung. Die beiden letzten Reaktionsschritte führen zu aromatischen Kohlenwasserstoffverbindungen, die bisher in Lösung nicht synthetisiert worden waren.

Die Forscher führten diese Untersuchungen im Ultrahochvakuum durch und konnten die Synthese mithilfe eines hochauflösenden Rasterkraftmikroskops mit einer Kohlenstoffmonoxid-Spitze verfolgen. Die vergleichenden Computerberechnungen führten zur genauen molekularen Struktur, die bestens mit den mikroskopischen Aufnahmen übereinstimmt.

Nanostrukturen nach Mass

Mit seinen Untersuchungen hat das internationale Forschungsteam gezeigt, dass Oberflächenchemie zu neuen Produkten führen kann. «Diese äusserst reine Form der Chemie liefert uns massgeschneiderte Nanostrukturen auf Oberflächen, die vielfältig eingesetzt werden können», kommentiert Meyer die Arbeiten, die massgeblich von Dr. Shigeki Kawai durchgeführt wurden. In dem vorgestellten Beispiel fungiert die Kupferoberfläche als Katalysator; die chemische Reaktion der Ausgangsmoleküle wird durch Wärmezufuhr gesteuert und lässt sich mittels Rasterkraftmikroskopie verfolgen.

Orginalbeitrag

Shigeki Kawai, Ville Haapasilta, Benjamin D. Lindner, Kazukuni Tahara, Peter Spijker, Jeroen A. Buitendijk, Rémy Pawlak, Tobias Meier, Yoshito Tobe, Adam S. Foster, and Ernst Meyer
Thermal control of a sequential on-surface transformation of a hydrocarbon molecule on copper surface
Nature Communications (2016), doi: 10.1038/ncomms12711

Weitere Auskünfte

Prof. Dr. Ernst Meyer, Universität Basel, Departement Physik, Tel. +41 61 267 37 24, E-Mail: ernst.meyer@unibas.ch

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close