Nur wenige Atome dick: Neue funktionelle Materialien entwickelt

Artistic representation of the crystal structure of the innovative material. Individual layers of the crystal can simply be lifted off.
Credit: Elisa Monte, Experimental Physics I, Justus Liebig University of Giessen

Mit dem kleinsten „Baukasten“ der Welt designt ein Forscherteam der Universitäten Marburg, Gießen und Paderborn neuartige Materialien für Computerchips, Leuchtdioden und Solarzellen.

Sie sind 50.000-mal dünner als ein menschliches Haar und nur wenige Atome dick: Zweidimensionale Materialien sind die dünnsten heute herstellbaren Stoffe. Sie besitzen völlig neue Eigenschaften und gelten als der nächste große Schritt in der modernen Halbleitertechnologie. Künftig könnten sie statt Silizium in Computerchips, Leuchtdioden und Solarzellen eingesetzt werden. Bislang war die Entwicklung neuer zweidimensionaler Materialien auf solche mit Schichten starrer chemischer Bindungen in zwei Raumrichtungen beschränkt – ähnlich einem Blatt Papier in einem Stapel.

Nun ist es erstmals einem Forscherteam der Universitäten Marburg, Gießen und Paderborn um Dr. Johanna Heine (Anorganische Chemie, Philipps-Universität Marburg) gelungen, diese Beschränkung mit einem innovativen Konzept aufzuheben. Die Forscherinnen und Forscher entwickelten einen organisch-anorganischen Mischkristall, der aus Ketten entlang einer Raumrichtung besteht, aber trotzdem zweidimensionale Schichten bildet. Dadurch können verschiedene Materialbestandteile wie in einem Baukasten gezielt miteinander kombiniert werden, um neuartige Materialeigenschaften zu erreichen.

In dem Projekt verbindet das Forscherteam die Vorteile von zweidimensionalen Materialien und hybriden Perowskiten – das namensgebende Mineral Perowskit ist für seine optoelektrischen Eigenschaften bekannt und kann zur Verbesserung dieser Eigenschaften mit anderen Stoffen kombiniert werden. „Das Besondere daran sind die ganz neuen Möglichkeiten zum gezielten Design zukünftiger funktioneller Materialien“, erklärt Dr. Johanna Heine, Chemikerin und Nachwuchsgruppenleiterin an der Universität Marburg, das hochaktuelle Forschungsgebiet mit großem Anwendungspotenzial. „Der hier erstmals entdeckte physikalische Effekt könnte das einfache und gezielte Einstellen der Farbe zukünftiger Beleuchtungs- und Displaytechnologien ermöglichen“, so der Physiker Philip Klement, Erstautor und Doktorand in der Arbeitsgruppe von Prof. Dr. Sangam Chatterjee an der Justus-Liebig-Universität Gießen (JLU).

Die Arbeit erfolgte in einer interdisziplinären Kooperation: Das Team um Dr. Johanna Heine an der Universität Marburg entwickelte zunächst die chemische Synthese und stellte das Material als einkristallinen Volumenkristall her. Philip Klement und das Team um Prof. Chatterjee stellten anschließend an der JLU aus diesen Kristallen einzelne atomar dünne Schichten her und untersuchten diese mit den Mitteln der optischen Laserspektroskopie. Dabei fanden sie eine spektrale breite („weiße“) Lichtemission, deren Farbtemperatur über die Schichtdicke geändert werden kann. In enger Zusammenarbeit mit dem Team theoretischer Physikerinnen und Physiker um Prof. Stefan Schumacher an der Universität Paderborn gelangen das mikroskopische Verständnis des Effekts und die Verbesserung der Materialeigenschaften.

Den Forscherinnen und Forschern ist es somit gelungen, den gesamten Bogen von der Synthese des Materials, über das Verständnis der Materialeigenschaften bis hin zur Modellierung der Materialeigenschaften zu spannen. Ihre Ergebnisse haben sie in der Fachzeitschrift „Advanced Materials“ veröffentlicht.

Wissenschaftliche Ansprechpartner:

Dr. Johanna Heine
Anorganische Chemie
Philipps-Universität Marburg
Telefon: 06421 28-25527

Prof. Dr. Sangam Chatterjee
I. Physikalisches Institut
Justus-Liebig-Universität Gießen
Telefon: 0641 99-33100

Originalpublikation:

Philip Klement, Natalie Dehnhardt, Chuan-Ding Dong, Florian Dobener, Samuel Bayliff, Julius Winkler, Detlev M. Hofmann, Peter J. Klar, Stefan Schumacher, Sangam Chatterjee, and Johanna Heine: Atomically Thin Sheets of Lead-Free One-Dimensional Hybrid Perovskites Feature Tunable White-Light Emission from Self-Trapped Excitons. Advanced Materials 2021. DOI: 10.1002/adma.202100518

https://doi.org/10.1002/adma.202100518

http://www.uni-giessen.de/

Media Contact

Caroline Link Presse, Kommunikation und Marketing
Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer