Moleküle als „Unter-Wasser-Klebstoff“ werden durch Licht ein- und ausgeschaltet

Wie man die Reibung zwischen zwei Oberflächen durch Licht regulieren kann, haben Wissenschaftler des Leibniz-Instituts für Neue Materialien (INM), der Universität des Saarlandes und der Universität Münster herausgefunden: Als Klebstoff, der unter Wasser funktioniert, nutzten sie spezielle Gastmoleküle, die durch abwechselnde Bestrahlung mit sichtbarem und ultraviolettem Licht eine Verbindung zwischen den Oberflächen aufbauen und wieder lösen. Die gemeinsame Arbeit, die von der Volkswagen Stiftung gefördert wird, wurde nun in „Chemical Communications“ publiziert.

Schiebt man eine Tasse auf dem Tisch hin und her, so entsteht Reibung zwischen den beiden Oberflächen, hebt man die Tasse hoch, müssen Adhäsionskräfte überwunden werden. Dass sich sowohl Reibung als auch Adhäsion durch bestimmte Moleküle erzeugen und per Lichtsignal steuern lassen, zeigten Forscher um die Saarbrücker Professoren Roland Bennewitz vom INM und Gerhard Wenz von der Saar-Uni gemeinsam mit Kollegen der Universität Münster um Bart Jan Ravoo. Sie arbeiteten jedoch nicht mit Tasse und Tisch, sondern experimentierten unter Wasser mit der (ein millionstel Millimeter feinen) Messspitze eines Rasterkraftmikroskops und einer Glasoberfläche.

Beide Oberflächen wurden mit sogenannten Wirtsmolekülen ausgestattet – großen Molekülen, die eine Art Hohlraum bilden. Ins Wasser werden nun Gastmoleküle gegeben: Sie haben eine längliche Form und tragen an beiden Enden eine molekulare Gruppe, die in den Hohlraum der Wirtsmoleküle passt. „Somit kann ein Gastmolekül zwei gegenüberliegende Wirtsmoleküle aneinander binden. Wenn sehr viele Verbindungen zwischen ‚Wirten‘ und ‚Gästen‘ aufgebaut werden, dann entstehen Adhäsion und Reibung, Messspitze und Glasoberfläche kleben aneinander“, erläutert der Uni-Professor für Organische Makromolekulare Chemie, Gerhard Wenz, der mit seinem Team die Gast-Wirt-Verbindungen erforscht hat.

Den „Trick mit dem Licht“ erklärt INM-Professor Roland Bennewitz so: „Die länglichen Gastmoleküle wurden von den Kollegen aus Münster als spezielle lichtempfindliche Moleküle synthetisiert: Sie beinhalten eine molekulare Gruppe, die bei Bestrahlung mit ultraviolettem Licht die Molekül-Enden abknickt. Diese passen dann nicht mehr in die Wirtsmoleküle, und die Verbindung zwischen den Oberflächen wird gelöst, die Reibung nimmt ab.“ Werden die Moleküle dagegen mit sichtbarem Licht bestrahlt, richten sie sich wieder gerade, und die „Gast-Wirt-Verbindungen“ entstehen erneut. „Durch abwechselnde Bestrahlung mit ultraviolettem und sichtbarem Licht kann man die Reibung verringern beziehungsweise verstärken“, sagt Bennewitz, unter dessen Leitung die mikroskopischen Prozesse gemessen wurden.

Die Arbeiten, die bei der aktuellen Studie im Nanometer-Maßstab durchgeführt wurden, stellen die Grundlage für ein weiterführendes Projekt dar, bei dem es um Anwendungen in makroskopischen Systemen gehen soll.

Die Studie wurde in „Chemical Communications“ publiziert:
Johanna Blass, Bianca L. Bozna, Marcel Albrecht, Jennifer A. Krings, Bart Jan Ravoo, Gerhard Wenz and Roland Bennewitz: Switching adhesion and friction by light using photosensitive guest-host interactions. DOI: 10.1039/C4CC09204J

Kontakt:
Johanna Blass (INM)
Tel.: 0681 9300-243
E-Mai: johanna.blass@inm-gmbh.de

Prof. Dr. Gerhard Wenz (Universität des Saarlandes)
Tel.: 0681 302-3449
E-Mail: g.wenz@mx.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681 302-4582) richten.

Media Contact

Gerhild Sieber Universität des Saarlandes

Weitere Informationen:

http://www.uni-saarland.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ordnung in der Unordnung

Dichtefluktuationen in amorphem Silizium entdeckt Erstmals hat ein Team am HZB mit Röntgen- und Neutronenstreuung an BESSY II und BER II in amorphem Silizium mit einer Auflösung von 0.8 Nanometern…

Das Protein-Kleid einer Nervenzelle

Wo in einer Nervenzelle befindet sich ein bestimmter Rezeptor? Ohne Antwort auf diese Frage ist es fast unmöglich, Rückschlüsse über die Funktion dieses Proteins zu ziehen. Zwei Wissenschaftlerinnen am Max-Planck-Institut…

40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

Wirkmechanismus des industriellen Katalysators Titansilikalit-1 basiert auf Titan-Paaren/Entdeckung wegweisend für die Katalysatorentwicklung Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close