Wie metallisches Glas verformbar wird

Metallische Gläser sind Legierungen, die nicht aus regelmäßig geordneten Kristallen bestehen, sondern wie Gläser oder Flüssigkeiten eine regellose Atomstruktur haben. Diese für Metalle sehr ungewöhnliche Atomanordnung hat eine einzigartige Kombination physikalischer Eigenschaften zur Folge.

Metallische Gläser sind im Allgemeinen härter, korrosionsbeständiger und fester als gewöhnliche Metalle. Die für die meisten Metalle charakteristische plastische Verformbarkeit, die eine Voraussetzung für das Schmieden und Walzen ist, fehlt den metallischen Gläsern jedoch. Sie sind spröde und brechen wie Fensterglas. Dies schränkt mögliche Anwendungen dieser neuen Materialklasse natürlich deutlich ein.

Forscher des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden haben nun einen Mechanismus der Verformung aufgedeckt, der die Sprödigkeit auf Zug belasteter metallischer Gläser mildert und sie plastisch verformbar macht. Hierzu haben sie Kupfer-Zirkon-Legierungen untersucht, die sich sowohl als kristalline Legierungen und als metallische Gläser herstellen lassen. In ihrem kristallinen Zustand haben diese Legierungen ein Formgedächtnis. Das heißt, dass sie sich an eine frühere Formgebung trotz nachfolgender Verformung scheinbar „erinnern“ und die ursprüngliche Form wieder annehmen. Diese Eigenschaft scheint auch Auswirkungen auf die Verformbarkeit im Glas-Zustand zu haben. Bei mechanischer Belastung scheiden sich in dem Glas Nanometer große Formgedächtniskristalle aus, die ihrerseits eine ausgeprägte Neigung zur Bildung sogenannter Verformungszwillinge haben.

Die chemische Zusammensetzung der Nanokristalle unterscheidet sich nicht von der des Glases. Damit sind nur geringfügige atomare Umordnungen nötig, um das Glas zu kristallisieren. Die Zwillingsbildung wiederum ist Ausdruck des Formgedächtniseffekts, der auf kleinen Längenskalen bevorzugt über eine Scherverformung erfolgt. Beide Prozesse, die Bildung von Nanokristallen und die Bildung von Zwillingen, benötigen Energie, die aus der aufgewandten Verformungsenergie gewonnen wird. Damit kann das Entstehen von Mikrorissen verzögert werden, die das spröde Versagen des Materials bewirken. Als Resultat ergibt sich eine makroskopisch messbare plastische Dehnung bei gleichzeitiger Verfestigung des Materials.

Eine Phasenumwandlung unter mechanischer Belastung wurde auch im Falle bestimmter Keramiken genutzt, um die plastische Verformbarkeit dieser ebenfalls sehr spröden Materialklasse zu erhöhen. Obwohl die Struktur als auch die Art der atomaren Bindungen von metallischen Gläsern und Keramiken sehr unterschiedlich ist, lässt sich dieser Ansatz scheinbar universell nutzen.

Diese Ergebnisse sind am 16. Mai in der Fachzeitschrift „nature materials“ erschienen:
S. Pauly, S. Gorantla, G. Wang, U. Kühn & J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses, Nature Materials 9, 473–477 (2010)

Online: http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2767.html.

Kontakt:

Simon Pauly
s.pauly@ifw-dresden.de
Tel. (0351) 46 59 451
Prof. Dr. Jürgen Eckert
j.eckert@ifw-dresden.de
Tel. (0351) 46 59 217

Media Contact

Dr. Carola Langer idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer