LOEWE-Schwerpunkt Präventive Biomechanik entwickelt virtuelle Menschmodelle zur Produktoptimierung
Im Rahmen des LOEWE-Schwerpunkts (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) Präventive Biomechanik (PräBionik) werden am Institut für Materialwissenschaften der Fachhochschule Frankfurt am Main die mechanischen Wechselwirkungen zwischen bestimmten Regionen des menschlichen Körpers und technischen Stützkonstruktionen wie Autositzen, Gefäßprothesen oder Sportschuhen untersucht.
Ziel ist es, Verletzungsrisiken durch biomechanisch optimierte Produkte – vom Joggingschuh bis zum Auto- und Flugzeugsitz – zu minimieren und den Sitz- und Trage-Komfort zu erhöhen.
„Wo drückt es, wenn man mit dem Auto eine längere Strecke auf einem schlechten Sitz fährt? Was passiert mit dem Fuß oder der Achillessehne, wenn man mit ‚falschen‘ Joggingschuhen läuft? Die Zahl an Patientinnen und Patienten nimmt aufgrund gesundheitsschädlicher Lebensweise und des demografischen Wandels zu. Dies hat einen erhöhten Einsatz von medizinischen Hilfsmitteln und Prothesen zur Folge“, erklärt Prof. Dr. Gerhard Silber, Geschäftsführender Direktor des Instituts für Materialwissenschaften und wissenschaftlicher Leiter des LOEWE-Schwerpunktes. „Allerdings können diese Hilfsmittel den Patientenzustand unter Umständen sogar verschlechtern, wenn sie in den betroffenen Weichgeweberegionen des Körpers kritische Spannungen und Verformungen erzeugen.“
Daher arbeiten die Wissenschaftler(innen) mit virtuellen Menschmodellen, die es möglich machen, unterschiedliche Effekte während der Interaktion mit technischen Stützkonstruktionen zu simulieren und zu messen. In Zusammenarbeit mit dem Automobilhersteller Daimler werden unter Einsatz dieser Methode Lösungen gesucht, Autositze noch weiter zu optimieren.
Die virtuellen Menschmodelle (BOSS-Modelle – Body Optimization & Simulation System) ermöglichen es, diese und andere Anwendungsfälle am Rechner zu simulieren. In einem ersten Schritt erfassen die Forscher(innen) dazu dreidimensional die aus Weich- und Hartgeweben bestehenden anatomischen Strukturen des menschlichen Körpers. Dies erfolgt unter Einsatz der Magnet-Resonanz-Tomografie am Institut für Diagnostische und Interventionelle Radiologie des Universitätsklinikums Frankfurt bei Prof. Dr. med. Thomas Vogl.
Mit Hilfe eines 3D-Laser-Scanners wird das gewünschte Finite-Elemente-Modell des kompletten Körpers oder einzelner Körperregionen im unbelasteten und/oder belasteten Zustand erzeugt (siehe Bilder). Der Einsatz der Menschmodelle ist erst durch die Ausstattung mit so genannten in-vivo-Materialeigenschaften, also am lebenden Menschen erzeugten Materialeigenschaften wie Haut/Fettgewebe-Muskelverbünde, im Rahmen von Interaktionen mit Stützkonstruktionen wie Autositzen oder Gelenkimplantaten möglich. So lassen sich Spannungen, Verzerrungen und Verformungen feststellen, die infolge der mechanischen Belastungen durch die Stützkonstruktionen in den Kontaktzonen sowie in den humanen Weichgeweberegionen auftreten.
Die Wissenschaftler(innen) erstellen derzeit auch Menschmodelle, die die Einwirkungen von Sportschuhen beim Gehen und Rennen simulieren. In Kooperation mit einem Sportschuhhersteller sollen so Schuhsohlen und Einlagen optimiert werden, um insbesondere die Achillessehne zu entlasten. Weiterhin konnten auf Basis menschlicher Kopfmodelle die mechanischen Eigenschaften der Wangenhaut erforscht und zur Produktoptimierung von Gebrauchsgegenständen des Hygienesegments genutzt werden.
Unter der Konsortialführung der FH Frankfurt arbeiten im LOEWE-Schwerpunkt Präventive Biomechanik (PräBionik) rund 38 Wissenschaftler(innen) der FH Frankfurt am Main, Goethe-Universität Frankfurt am Main, Philipps-Universität Marburg, sowie die assoziierten Partnerhochschulen Bergische Universität Wuppertal, Johannes Gutenberg-Universität Mainz und Katholisches Klinikum Mainz zusammen. Im Mittelpunkt der Forschungsaktivitäten stehen interdisziplinäre Fragestellungen aus Ingenieurwissenschaften, Biologie und Medizin zu den mechanischen Interaktionen zwischen humanen Weich- und Hartgeweberegionen und technischen Stützkonstruktionen, wie Liege- und Sitzsysteme, Schuhe, künstliche Gelenke oder Implantate in Knochen- und Knorpelstrukturen. Die Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) ist ein Forschungsförderungsprogramm, mit dem das Land Hessen seit 2008 die Hochschulen und Forschungseinrichtungen in Hessen unterstützt.
Kontakt: FH Frankfurt, Fachbereich 2: Informatik und Ingenieurwissenschaften, Institut für Materialwissenschaften, Prof. Dr. Gerhard Silber, Telefon: 069/1533-3035, E-Mail: silber@fb2.fh-frankfurt.de
Media Contact
Weitere Informationen:
http://www.praeventive-biomechanik.euAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Kommunikation mithilfe von Molekülen
Die Europäische Union finanziert ein Projekt für die Entwicklung eines neuen Konzepts der Informationsübertragung für aktive implantierte medizinische Geräte im Rahmen ihres Förderprogramms Horizont Europa. Für das Projekt ERMES stellt…
Konzeptneurone sind Bausteine der Erinnerung
Bonner Forschende klären die Funktion von spezialisierten Nervenzellen bei der Gedächtnisbildung. Spezialisierte Nervenzellen im Schläfenlappen reagieren hochselektiv auf Bilder und Namen einer einzelnen Person oder konkreter Objekte. Forschende des Universitätsklinikums…
Innovative Forschung enthüllt neuen Weg zur Ethanolproduktion aus CO2
In einer bahnbrechenden Studie, die in der renommierten Zeitschrift „Energy & Environmental Science“ veröffentlicht wurde, haben Wissenschaftler*innen der Abteilung Interface Science am Fritz-Haber-Institut eine neuartige Methode zur Umwandlung des Treibhausgases…