Intelligente Fasern: Farbwechsel bei beschädigten Seilen

The coated polyester filament before and after the heat test at 150 degrees (right). The color change from blue to white is clearly visible and the safety of the product is no longer guaranteed.
Image: Empa

Hochleistungsfasern, die hohen Temperaturen ausgesetzt waren, verlieren meist unerkannt ihre mechanischen Eigenschaften und können im schlimmsten Fall genau dann reissen, wenn Leben davon abhängen. Zum Beispiel Sicherheitsseile der Feuerwehr oder Tragseile für schwere Lasten auf Baustellen. Empa-Forschende haben nun eine Beschichtung entwickelt, die die Farbe wechselt, wenn sie hohen Temperaturen durch Reibung oder Feuer ausgesetzt war.

Der Feuerwehrmann rennt ins brennende Gebäude und durchsucht systematisch Raum für Raum nach Personen, die Rettung bedürfen. An ihm befestigt ist ein Sicherungsseil, an dessen anderem Ende die Kollegen draussen vor dem Haus warten und ihn im Notfall – sollte er aus irgendwelchen Gründen das Bewusstsein verlieren – aus dem Gebäude ziehen oder ihm zur Rettung ins Gebäude folgen können. Ist dieses Seil allerdings bei vorherigen Einsätzen zu grosser Hitze ausgesetzt gewesen, kann es vorkommen, dass es reisst. Das bedeutet Lebensgefahr! Und bislang gab es keine Möglichkeit, dem Seil diese Schäden anzumerken. Ein Forscherteam der Empa und der ETH Zürich haben nun eine Beschichtung entwickelt, die aufgrund der physikalischen Reaktion mit Hitze ihre Farbe wechselt und so deutlich anzeigt, ob ein Seil auch zukünftig noch die Sicherheit bietet, die es verspricht.

Forschende der ETH Zürich und der Empa entwickelten 2018 im Rahmen einer Masterarbeit ein Beschichtungssystem, das das Empa-Team nun auf Fasern anwenden konnten. „Das war ein Prozess mit mehreren Schritten“, so Dirk Hegemann von der Empa-Abteilung Advances Fibers. Die ersten Beschichtungen funktionierten lediglich auf glatten Oberflächen; die Methode musste also zunächst einmal so angepasst werden, dass sie auch bei gekrümmten Flächen funktioniert. Die Empa verfügt beim Beschichten von Fasern über ein breites Know-How – so haben Hegemann und sein Team in der Vergangenheit bereits elektrisch leitfähige Fasern entwickelt. Das sogenannte Sputtering kam nun auch bei der neusten Beschichtung erfolgreich zum Einsatz.

Hauchdünne Schichten mit grosser Wirkung

Damit die Faser bei Hitze auch tatsächlich ihre Farbe verändert, sind drei Schichten nötig. Auf die Faser selbst, im Falle der Forschungsarbeit PET (also Polyester) und VectranTM, eine Hightech-Faser, bringen die Forschenden Silber auf. Dieses dient als Reflektor – also als metallische Basisschicht. Dann folgt eine Zwischenschicht aus Titan-Stickoxid, die dafür sorgt, dass das Silber stabil bleibt. Und erst dann folgt jene amorphe Schicht, die für die Farbveränderung sorgt: Gerade einmal 20 Nanometer dünnes Germanium-Antimon-Tellurium (GST). Wird diese Schicht erhöhten Temperaturen ausgesetzt, kristallisiert sie; dadurch verändert sich der Farbeindruck, etwa von blau nach weisslich. Der Farbumschlag basiert auf einem physikalischen Phänomen, der so genannten Interferenz. Dabei treffen zwei unterschiedliche Wellen (z.B. Licht) aufeinander und verstärken sich beziehungsweise schwächen sich gegenseitig ab. Abhängig von der chemischen Zusammensetzung der temperatursensitiven Schicht lässt sich diese Farbveränderung auf einen Temperaturbereich zwischen 100 und 400 Grad einstellen und damit an die mechanischen Eigenschaften des Fasertyps anpassen.

Massgeschneiderte Lösungen

Noch sind die möglichen Anwendungsgebiete der farbverändernden Fasern offen, und Hegemann ist derzeit auf der Suche nach möglichen Projektpartnern. Nebst Sicherheitsausrüstung für Feuerwehrleute oder Bergsteiger lassen sich die Fasern auch für Lastseile in Produktionsstätten, auf Baustellen usw. nutzen. Die Forschung am Thema ist jedenfalls noch längst nicht abgeschlossen. So lässt sich die Fasern zurzeit noch nicht über längere Zeiträume lagern, ohne ihre Funktionalität zu verlieren. «Leider oxidieren die Phase-Change-Materialien im Verlauf von einigen Monaten», so Hegemann. Das bedeutet, dass der entsprechende Phasenwechsel – die Kristallisation – selbst bei Hitze nicht mehr stattfindet und das Seil somit sein «Warnsignal» verliert. Dass das Prinzip funktioniert, ist jedenfalls bewiesen und die Haltbarkeit ein Thema zukünftiger Forschung, so Hegemann. «Sobald erste Partner aus der Industrie ihr Interesse für eigene Produkte anmelden, lassen sich die Fasern entsprechend ihren Bedürfnissen weiter optimieren».

Wissenschaftliche Ansprechpartner:

Dr. Dirk Hegemann
Advanced Fibers
Tel. +41 58 765 7268
Dirk.Hegemann@empa.ch

Redaktion / Medienkontakt

Dr. Andrea Six
Kommunikation
Tel. +41 58 765 61 33
redaktion@empa.ch

Weitere Informationen:

https://www.empa.ch/web/s604/smarte-fasern

Media Contact

Rainer Klose Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer