Höchstempfindlich die Wasserdurchlässigkeit von Ultrabarrierematerialien bestimmen

HiBarSens-Messgerät zur Routineuntersuchung der Wasserdampfpermeationsrate von Ultrabarrierematerialien. Bild: Fraunhofer IWS Dresden<br>

Die Wasserdampfdurchlässigkeit (Permeation) ist für eine Vielzahl Anwendungen gerade auf dem Gebiet der organischen Elektronik ein äußerst kritischer Parameter. Bereits geringste Feuchtespuren beeinträchtigen signifikant die Funktion bzw. Leistungsfähigkeit von organischen Leuchtdioden (OLED), elektronischer Tinte (E-Ink) oder von Solarzellen.

Da Lebenszyklen der entsprechenden Produkte (Leuchten, Displays, Solarmodule) von einigen Jahren, bei Solarzellen sogar Jahrzehnten, angestrebt werden, sind die daraus abgeleiteten Anforderungen an die Barrierematerialien enorm hoch. Lediglich 10 Mikrogramm Wasserdampf darf pro Quadratmeter Barrierefläche an einem Tag (10-4 g m-2 d-1) die aktiven Schichten erreichen. Barrieresysteme mit Permeationsraten im Bereich 10-5 und sogar 10-6 g Wasserdampf pro Tag und Quadratmeter Barrierefläche stehen bereits für die nahe Zukunft in den Roadmaps der Entwickler und Produzenten. 10-6 g m-2 d-1, das entspricht einer Barrierefläche von etwa 7 Fußballfeldern, die täglich lediglich einen einzigen Wassertropfen hindurchlassen darf!

Um für den Nachweis dieser äußerst geringen Wasserdampfspuren ein hinreichend empfindliches Messsystem den Anwendern zur Verfügung zu stellen, forschen und entwickeln die Wissenschaftler des Fraunhofer-Instituts IWS Dresden gemeinsam mit den Ingenieuren der SEMPA Systems GmbH seit ca. 5 Jahren. Seit einem halben Jahr kann die SEMPA Systems GmbH das erste Ergebnis dieser erfolgreichen Kooperation den Her-stellern und Anwendern von Ultrabarrierefolien anbieten. Das „HiBarSens®“ (High Barrier Sensor) benannte Messsystem erreicht eine um eine Größenordnung bessere Nachweisgrenze, als die derzeit verfügbaren Messgeräte. Dieser Leistungssprung hat seine Ursache im verwendeten Sensor: Ein Laser kann die wenigen permeierten Wassermoleküle sicher „zählen“ und somit die Nachweisgrenze bis in den 10-5er Bereich zukünftig sogar in den 10-6er Bereich absenken.

Der Einsatz eines Lasers als Feuchtesensor eröffnet noch weitere Vorteile, die im nun gestarteten Forschungs- und Entwicklungsvorhaben umgesetzt werden sollen. Die optische Messung beeinflusst in keiner Art und Weise den Analyten, andererseits kann der Laserstrahl beliebig umgelenkt werden. Was lag näher, als ein Konzept zu entwickeln, das es ermöglicht, mit lediglich einem Sensor die Permeationsrate von mehreren Hochbarriereproben simultan zu messen? Ganze Messreihen, in denen entweder die Herstellungsparameter der Barrierefolien variiert wurden oder unterschiedliche Messbedingungen (Temperatur) vorgegeben werden, sind dann gleichzeitig durchführ-bar. Der Zeit- und Effizienzgewinn liegen auf der Hand, wenn man bedenkt, dass eine Permeationsmessung eine äußerst zeitintensive Angelegenheit ist. Muss man bei Barriereproben im Bereich von 10-1 g m-2 d-1 mit etwa 12 Stunden Messzeit rechnen, so sind es bei 10-2 g m-2 d-1 bereits einige Tage, bei 10-5 g m-2 d-1 sogar Wochen! Die Physik der Permeation lässt sich (leider) nicht umgehen, wenn man zuverlässig die richtigen Mess-daten erfassen möchte.

Die Projektmitarbeiter sind zuversichtlich, dass hoch ambitionierte Ziel zu schaffen: in 26 Monaten den Prototypen eines mit mindestens vier separaten Messzellen ausgestatteten Permeationsmesssystems für Ultrabarrieren der Öffentlichkeit zu präsentieren.

Bereits auf der LOPE-C Messe, dem Treffpunkt der Experten auf dem Gebiet der organischen Elektronik, werden SEMPA Systems GmbH und das Fraunhofer IWS Dresden erste Ergebnisse Ihrer Kooperation, insbesondere das HiBarSens® Gerät präsentieren.

Besuchen Sie uns auf der LOPE-C 2012 (4th International Conference and Exhibi-tion for the Organic and Printed Electronics Industry) vom 19. – 21. Juni 2012 in München (Halle B0, Stand 314).
Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Winterbergstr. 28
01277 Dresden
Dr. Wulf Grählert
Tel. 0351 / 83391-3406
Fax 0351 / 83391-3300
E-Mail: wulf.graehlert@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
Winterbergstr. 28
01277 Dresden
Tel. 0351 / 83391-3444
Fax 0351 / 83391-3300
E-Mail: ralf.jaeckel@iws.fraunhofer.de
Das hier vorgestellte Forschungs- und Entwicklungsprojekt wird mit Mitteln der Europäischen Union finanziert und von der Sächsischen Aufbaubank betreut. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Media Contact

Dr. Ralf Jaeckel Fraunhofer-Institut

Weitere Informationen:

http://www.iws.fraunhofer.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close