Ganz neue Einsichten in das supraleitende Wesen von Diamanten

Ein Diamant ist per se weder für die Mikroelektronik tauglich – er ist nicht
leitend – noch ist er ein Supraleiter, also ein Material, das verlustfrei Strom leitet.

Implantiert man Bor-Atome in die Oberfläche eines Diamanten, so wird er halbleitend und damit interessant für die Mikroelektronik. Ein deutsches Wissenschaftlerteam aus Bayreuth, Heidelberg, Potsdam und Dresden erforschte nun mit modernsten Untersuchungstechniken die supraleitenden Eigenschaften bei diesem Material. Nachzulesen ist dies in der aktuellen Ausgabe des Fachjournals „PNAS – Procedings of the National Academy of Sciences of the United States“ (Early Edition vom 12. August 2008).

Ein Diamant, in den Bor-Atome implantiert wurden, wird nicht nur halbleitend, sondern weist auch sehr gute thermoelastische und mechanische Eigenschaften auf. Seit 2004 ist zudem bekannt, dass die Verbindung aus Diamant und Bor supraleitend ist. Bisher unbekannt waren jedoch die genauen Zusammenhänge, also beispielsweise, ob die Supraleitung eine universelle Eigenschaft von Diamanten ist oder ob die Konzentration der Bor-Atome, die sich im Kristallgitter eines Diamanten befinden, die Temperatur bestimmt, bei der die Verbindung supraleitend wird. Diese Temperatur wird Sprungtemperatur genannt. Supraleitung tritt meist nur bei sehr tiefen Temperaturen auf.

Das Forscherteam, zu dem aus Bayreuth die Privatdozentin Dr. Natalia Dubrovinskaia (Kristallographie), Privatdozent Dr. Leonid Dubrovinsky und Nobuyoshi Miyajima PhD (beide Bayerisches Geoinstitut) und der Experimentalphysiker Professor Dr. Hans Braun gehören, setzte Untersuchungstechniken wie die hochauflösende Transmissionselektronen-Spektroskopie und die Elektronen-Energieverlust- Spektroskopie ein und lüftete damit einige der Rätsel um die Materialverbindung von Diamant und Bor.

Die Mineralphysikerin Dr. Natalia Dubrovinskaia stellte zunächst die Verbindung unter hohem Druck und bei sehr hohen Temperaturen her, also unter Bedingungen, wie sie im Inneren der Erde herrschen. Durch ausgefeilte Untersuchungstechniken fand das Wissenschaftlerteam der beiden Universitäten Bayreuth und Heidelberg, des GeoForschungsZentrums Potsdam (GFZ) und des Forschungszentrums Dresden- Rossendorf (FZD) heraus, dass die Supraleitung der Verbindung nicht von einer hohen Bor-Konzentration im Diamant abhängig ist.

Vielmehr wiesen die untersuchten Diamantkörner, entgegen der bisher gültigen wissenschaftlichen Meinung, nur eine geringe Menge von Bor auf. Die genaue Untersuchung der Mikrostruktur zeigte zudem erstmals, dass sich das Bor amorph (ohne geordnete Struktur) zwischen den Diamantkörnern befindet.

Diese Ergebnisse, so Dr. Natalia Dubrovinskaia, eröffnen neue Einsichten in das supraleitende Wesen von Diamanten: „Das ist eine genauso überraschende wie unerwartete Entdeckung. Unsere Ergebnisse verändern die Richtung der Untersuchungen im Bereich der supraleitenden diamanthaltigen Materialien komplett, sodass sie völlig neue Perspektiven in der Synthese superharter und supraleitender Nanokompositen eröffnen.“

Media Contact

Dr. Natalia Dubrovinskaia Universität Bayreuth

Weitere Informationen:

http://www.uni-bayreuth.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer