Forscher filmen Schockwelle in Diamant

Lauf der Schockwelle durch den Diamanten. Die Riffelstruktur links stammt vom Probenhalter. Bild: Andreas Schropp/DESY

Mit ultrakurzen Röntgenblitzen haben Forscher Schockwellen in Diamanten gefilmt. Die Studie unter Leitung von DESY-Wissenschaftlern eröffnet neue Möglichkeiten zur Untersuchung von Materialeigenschaften. Dank der extrem hellen und kurzen Röntgenblitze konnten die Forscher die rasante Dynamik der Schockwelle sowohl mit hoher räumlicher als auch mit hoher zeitlicher Genauigkeit verfolgen. Das Team um DESY-Physiker Prof. Christian Schroer stellt seine Arbeit im Fachblatt „Scientific Reports“ vor.

„Mit der Untersuchung betreten wir ein neues wissenschaftliches Feld“, betont Hauptautor Dr. Andreas Schropp von DESY. „Erstmals können wir mit Röntgenbildgebung die lokalen Eigenschaften und die Dynamik von Materie unter extremen Bedingungen quantitativ bestimmen.“

Für ihre Pilotstudie hatten die Wissenschaftler Diamanten mit dem derzeit stärksten Röntgenlaser der Welt durchleuchtet, der Linac Coherent Light Source LCLS am US-Beschleunigerzentrum SLAC in Kalifornien. Dabei spannten sie drei Zentimeter lange und knapp 0,3 Millimeter dünne Diamantstifte in einen Probenhalter ein.

Ein starker Infrarotlaser löste eine Schockwelle aus, indem er einen 0,15 milliardstel Sekunden (150 Pikosekunden) kurzen Blitz auf die Schmalseite des Diamanten schoss und dabei eine Leistung von bis zu 12 Billionen Watt (12 Terawatt) pro Quadratzentimeter erreichte. Diese Schockwelle raste mit rund 72.000 Kilometern pro Stunde quer durch den Diamanten.

„Um Schnappschüsse von derart schnellen Prozessen zu machen, sind extrem kurze Belichtungszeiten nötig“, erläutert Schropp. Die LCLS liefert Röntgenblitze, die nur 50 Millionstel einer milliardstel Sekunde (50 Femtosekunden) dauern und die schnellste Bewegungen in einem Standbild einfrieren können. Da die Diamantprobe allerdings bei jeder Aufnahme unter den extremen Bedingungen zerstört wird, mussten die Wissenschaftler das Experiment mehrfach mit gleichartigen Proben wiederholen, wobei sie die Schockwelle jeweils zu einem etwas späteren Zeitpunkt ablichteten. Diese Serie von Standbildern montierten sie schließlich wie ein Daumenkino zu einem Film.

Aus diesem Film konnten die Forscher quantitativ die Dichteänderung aufgrund der Schockwelle ermitteln. Das speziell hierfür entwickelte Röntgenmikroskop ermöglicht die Abbildung von bis zu 500 millionstel Millimeter (500 Nanometer) kleinen Details einer Probe. Zusammen mit der gemessenen Schallgeschwindigkeit lässt sich so der Zustand des Diamanten unter hohen Drücken bestimmen. Ergebnis: Die heftige Schockwelle presst den Diamanten – immerhin eines der härtesten Materialien der Welt – lokal um knapp zehn Prozent zusammen.

Die Pilotstudie bietet neue Einblicke in die Beschaffenheit von Diamant. „Durch ihre außergewöhnlichen physikalischen Eigenschaften sind Diamanten ein Material von anhaltender wissenschaftlicher und technologischer Bedeutung“, sagt Prof. Jerome Hastings vom SLAC. „Zum ersten Mal haben wir auf direktem Weg mit Röntgenstrahlen Schockwellen in Diamanten abgebildet, was neue Perspektiven auf das dynamische Verhalten von Diamant unter Hochdruck eröffnet.“ So ist für Materialforscher insbesondere das bereits in diesen ersten Aufnahmen sichtbare komplizierte Verhalten hinter der vordersten Schockfront von Interesse.

Durch die Weiterentwicklung der Röntgenlaser und eine Optimierung des Detektors lässt sich die räumliche Auflösung nach Erwartung der Forscher noch auf feiner als 100 Nanometer steigern, etwa auch am Europäischen Röntgenlaser European XFEL, der zurzeit vom DESY-Gelände in Hamburg bis ins benachbarte Schenefeld gebaut wird. Die Technik kann dabei dank der durchdringenden Röntgenstrahlung nahezu auf beliebige feste Stoffe, etwa Eisen oder Aluminium, angewendet werden. „Die Methode ist für eine Reihe von Anwendungen in der Materialwissenschaft und bei der Beschreibung physikalischer Prozesse im Inneren von Planeten wichtig“, fasst Untersuchungsleiter Schroer zusammen.

Neben DESY und SLAC waren die Technische Universität Dresden, die Universität Oxford in Großbritannien und das Lawrence Livermore National Laboratory (LLNL) in den USA an der Arbeit beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL; Andreas Schropp, Robert Hoppe, Vivienne Meier, Jens Patommel, Frank Seiboth, Yuan Ping, Damien G. Hicks, Martha A. Beckwith, Gilbert W. Collins, Andrew Higginbotham, Justin S. Wark, Hae Ja Lee, Bob Nagler, Eric C. Galtier, Brice Arnold, Ulf Zastrau, Jerome B. Hastings & Christian G. Schroer; „Scientific Reports”, 2015; DOI: 10.1038/srep11089

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=819&… – Weiteres Bild- und Filmmaterial

Media Contact

Dr. Thomas Zoufal idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer