Elektronenstrahl-3D-Drucker für Metalle an der Universität Kassel

Prof. Dr.-Ing Thomas Niendorf bereitet am 3D-Drucker für Metalle den nächsten Druckvorgang vor. Gemeinsam mit seinem Team arbeitet er daran, den Prozess des Druckens zu optimieren. Foto: Andreas Fischer für Uni Kassel

Beim 3D-Drucker an der Universität Kassel wird Metallpulver durch einen Elektronenstrahl geschmolzen. Solche Anlagen sind an deutschen Universitäten noch rar. Anwendung finden sie vor allem in der Hightech-Branche.

Da das Verfahren noch nicht für alle Industriezweige ausreichend erprobt wurde, wird es beständig weiterentwickelt. An dieser Stelle leisten die Forscherinnen und Forscher aus Kassel Grundlagen-Arbeit – etwa wenn es darum geht, die physikalischen Eigenschaften der fertigen Produkte an die Bedürfnisse der verschiedenen Branchen anzupassen. Der Drucker an der Uni Kassel im Wert von rund 750.000 Euro wurde zu 100 Prozent von der DFG finanziert.

Um einen Gegenstand zu drucken, müssen die Kasseler Ingenieurinnen und Ingenieure zunächst ein virtuelles Modell des Objekts anfertigen und die Daten am Computer für den Drucker übersetzen. Jede Schicht, die der Drucker aufträgt, ist nur etwa 30 bis 150 Mikrometer dick – das entspricht in etwa dem Durchmesser eines menschlichen Haares.

Je nach Größe der einzelnen Teile kann in einem Druckvorgang eine Vielzahl verschiedener Objekte gleichzeitig hergestellt werden. Während des Druckvorgangs beträgt die Temperatur im Inneren des Druckers dabei bis zu 1200 Grad Celsius. Nach dem Druck werden alle Teile von umgebendem Metallpulver befreit, nachbehandelt und geprüft.

Weltweit dominieren Titanlegierungen beim 3D-Druck mit Metallen. Sie machen ca. 80 Prozent des Weltmarktes aus. Zertifiziert sind sie unter anderem für die Biomedizin und die Luftfahrtindustrie. Neben der Suche nach weiteren geeigneten Metallen forschen die Ingenieurinnen und Ingenieure der Uni Kassel vor allem im Bereich der Nachbearbeitung und Prüfung der Druckerzeugnisse. Niendorf hebt hervor: „Wir testen jedes Teil, das den Drucker verlässt, auf Stabilität und Beschaffenheit. Dazu stehen uns diverse Röntgendiffraktometer, zwei Rasterelektromikroskope, mechanische Prüfmaschinen und ein Computertomograph zur Verfügung.“

Chancen für die Deutsche Volkswirtschaft

Seit Oktober 2015 ist Dr.-Ing. Thomas Niendorf Professor im Fachgebiet Metallische Werkstoffe des Instituts für Werkstofftechnik. Niendorf ist Experte für den 3D-Druck mit Metallen und forscht schwerpunktmäßig am Herstellungsprozess und der Mikrostruktur, den mechanischen Eigenschaften und der Schädigungsentwicklung von Gegenständen aus dem 3D-Drucker.

Studiert und promoviert hat Niendorf an der Universität Paderborn. Von 2010 bis 2014 leitete er dort den Bereich der Materialermüdung. Im Anschluss forschte er rund ein Jahr lang an der TU Bergakademie Freiberg.

Der Markt für 3D-Druck mit Metallen ist in den letzten fünf Jahren stark gewachsen. Niendorf erklärt: „Die Gegenstände, die wir herstellen sind extrem filigran und komplex. Anders als im 3D-Druck könnte man sie oft gar nicht produzieren.“

Einen Arbeitsplatzverlust für die deutsche Volkswirtschaft erwartet der Wissenschaftler durch die neue Art der Produktion nicht: „Deutsche Hersteller sind führend bei der Erzeugung von Metallpulvern und dem Bau von Anlagen zum 3D-Laserschmelzen.“ Zudem zeigten viele Unternehmen Interesse an Experten für 3D-Druck. Entsprechend groß sei der Bedarf an Fachkräften.

Die Universität Kassel ist eine junge, moderne Hochschule mit rund 330 Professorinnen und Professoren und etwa 24.000 Studierenden. Einer ihrer Forschungsschwerpunkte ist die Werkstoff- und Produktionstechnik.

Kontakt:
Prof. Dr.-Ing. Thomas Niendorf
Universität Kassel
Institut für Werkstofftechnik
Fachgebiet Metallische Werkstoffe
Tel.: 0561 804 7018
E-Mail: niendorf@uni-kassel.de

http://www.uni-kassel.de

Media Contact

Sebastian Mense idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Durchleuchten im Nanobereich

Physiker der Universität Jena entwickeln einen der kleinsten Röntgendetektoren der Welt Ein Röntgendetektor kann Röntgenstrahlen, die durch einen Körper hin­durchlaufen und nicht von ihm absorbiert werden, aufnehmen und somit ein…

Wer hat das Licht gestohlen?

Selbstinduzierte ultraschnelle Demagnetisierung limitiert die Streuung von weicher Röntgenstrahlung an magnetischen Proben.   Freie-Elektronen-Röntgenlaser erzeugen extrem intensive und ultrakurze Röntgenblitze, mit deren Hilfe Proben auf der Nanometerskala mit nur einem…

Mediterrane Stadtentwicklung und die Folgen des Meeresspiegelanstiegs

Forschende der Uni Kiel entwickeln auf 100 Meter genaue Zukunftsszenarien für Städte in zehn Ländern im Mittelmeerraum. Die Ausdehnung von Städten in niedrig gelegenen Küstengebieten nimmt schneller zu als in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close