Mit Computersimulationen Wasserstoff in Metallbauteilen aufspüren

Visualisierung der Diffusion von Wasserstoff-Atomen in einem Kristallgitter im Bereich einer Rissspitze. © Fraunhofer IWM<br>

Die Simulationen sollen vorhersagen und bewerten können, wie anfällig verschiedene Materialien und Bauteile für die sogenannte Wasserstoffversprödung sind. Dabei müssen die komplexe Mikrostruktur der Werkstoffe, realistische Einsatzbedingungen und typische mechanische Beanspruchungen berücksichtigt werden.

Denn bereits während Metall »gekocht«, gewalzt und später zu Blechen und Bauteilen verarbeitet wird, entstehen feinste Risse und spröde Bereiche, die Metallbauteile instabiler werden lassen können. Schuld daran hat oft atomarer Wasserstoff, der sich durch das Metall bewegt, sich an Fehlstellen oder Metallkorngrenzen ansammelt und so die mechanischen Eigenschaften verschlechtert. Der dahinterstehende Mechanismus heißt Wasserstoffversprödung. Je nach Belastung und Außeneinflüssen entwickeln sich solche Fehlstellen zu feinen Rissen, die auf eine kritische Größe anwachsen können – das Bauteil bricht.

Bisher analysierten Wissenschaftlerinnen und Wissenschaftler, wie sich Risse bilden und wie sie fortschreiten, um der Wasserstoffversprödung auf die Spur zu kommen. Doch diese Mechanismen hängen stark davon ab, wie sich Wasserstoff im Metall bewegt und wie hoch seine Konzentration an kritischen Rissbildungsstellen ist. Darum konzentriert sich das Projekt MultiHy auf die lokalen Bedingungen bei der Rissbildung wie Wasserstoffkonzentration, Materialspannungen, Temperatur und mechanische Belastungen. Dabei ist wichtig, die Bewegungen von Wasserstoff im Metall in Abhängigkeit von äußeren Faktoren und von der Materialstruktur in unterschiedlichen Größenskalen zu verstehen. »Wir wollen jetzt Computersimulationen über mehrere Größenskalen hinweg übergreifend durchführen, von dem Verhalten der Atome über mehrere Zwischenschritte bis hin zum Verhalten des gesamten Bauteils«, erklärt der Koordinator des Projekts, Dr. Nicholas Winzer, die Besonderheit im Projekt.
Atomare Informationen wie Diffusionsbarrieren, Aktivierungsenergien und Störstellen im Kristallgitter können nun direkt in die Vorhersage der Lebensdauer der Bauteile unter ihren Einsatzbedingungen einfließen. »Mit den Simulationen können wir genauer vorhersagen, wie anfällig ein Material oder ein Bauteil für die Wasserstoffversprödung unter realistischen Bedingungen ist«, sagt Dr. Matous Mrovec, Koordinator der atomistischen Simulationen. Zudem finden experimentelle Untersuchungen von Materialproben statt, die von den Industriepartnern des Projekts geliefert werden. Mithilfe dieser Ergebnisse optimiert das Fraunhofer IWM gemeinsam mit den Projektpartnern die Simulationen.

In dem Projekt »Multiscale Modeling of Hydrogen embrittlement MultiHy«, das innerhalb des 7. Rahmenprogramms der Europäischen Kommission gefördert wird, erarbeiten elf Partner aus Forschung und Industrie anwendungsbezogene, industriell relevante Problemstellungen. Neben Deutschland sind Großbritannien, die Niederlande, Norwegen, Österreich und Spanien vertreten. Das Projekt hat eine Laufzeit von vier Jahren.

Koordinator des Projekts MultiHy:
Dr. Nicholas Winzer
+49 761 5142-256 | nicholas.winzer@iwm.fraunhofer.de
http://www.multihy.eu

Media Contact

Thomas Götz Fraunhofer-Institut

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Durchbruch bei CRISPR/Cas

Optimierte Genschere erlaubt den stabilen Einbau von großen Genen. Großer Fortschritt an der CRISPR-Front. Wissenschaftlern des Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es erstmals gelungen, sehr effizient große Gen-Abschnitte stabil und…

Rittal TX Colo: Das neue Rack für Colocation Data Center

Rittal TX Colo: Flexibel, skalierbar und zukunftssicher Mit der zunehmenden Digitalisierung und künftig auch immer mehr KI-Anwendungen steigt der Bedarf an Rechenleistung signifikant – und damit boomt der Colocation-Markt. Unternehmen…

Partner & Förderer