Forschen für die Flügel-Fertigung

Rund 53 Meter misst dieses Rotorblatt. Abeking & Rasmussen baute es für die Enercon-Anlage E112. Nur wer genau hinschaut, erkennt den Kleinwagen im Vordergrund. Der Smart ist 2,5 Meter kurz. Foto: Abeking & Rasmussen Rotec GmbH

Standort sichern: Automatisierung in der Rotorblatt-Herstellung für Windkraftanlagen

Mit über 180 Metern Höhe überragen heutige Windenergieanlagen inzwischen den Bremer Fallturm oder den Kölner Dom. Nicht nur diese Größenordnungen schaffen Parallelen zur Luftfahrt: Das neue Forschungsprojekt des Bremer Instituts für Konstruktionstechnik (BIK) im Fachbereich Produktionstechnik der Universität und des Lemwerderaner Rotorblatt-Herstellers Abeking & Rasmussen Rotec GmbH erfordert das Wissen, das die Uni-Wissenschaftler in Zusammenarbeit mit der Flugzeugindustrie um die Produktion extrem belasteter Leichtbauteile sammeln konnten. PREBLADE heißt das zweijährige Projekt. Es befasst sich mit der Herstellung von Rotorblättern, umfasst rund eine Million Euro und wird mit knapp 900.000 Euro vom Bundesumweltministerium gefördert.

Rotorblätter von Windkraftanlagen sind heute bis zu 62 Meter lang und wiegen bis zu 20 Tonnen. Gefertigt werden sie aus einem Glas- oder Kohlefasergelege und Kunstharz, dem so genannten Matrixwerkstoff. Daraus entsteht dann ein Faserverbundwerkstoff. Das Fasergelege wird zugeschnitten und in eine Form eingelegt, anschließend wird das Harz zugeführt. Nachdem die Schalen in temperierten Formen unter Wärmezufuhr ausgehärtet sind, werden die Rotorblatthälften verklebt und nach nochmaligen Tempern entformt. Jetzt fehlen nur noch ein paar Nacharbeiten wie das Aufbringen der Beschichtung. Das alles geschieht überwiegend von Hand. Nun sollen einige der Schritte automatisiert werden.

„Sehr aufwändig und schwierig sind der Zuschnitt und das Platzieren des Geleges“, erklärt PREBLADE-Projektleiter Dipl.-Ing. Ingo Gebauer im BIK. „Die Fasergelege müssen sorgfältig in die Form drapiert werden. Dabei muss die Faserorientierung beibehalten werden.“ Das heißt: Die Ausrichtung der Fasern muss perfekt passen. Nichts darf quer oder faltig liegen. Hier greift das Forschungsvorhaben. Kein mühsames Schneiden, Schleppen, Zerren und Zupfen mehr – künftig soll ein Roboter diese Arbeiten erledigen. Schnell und präzise schneidet und platziert er das Glasfasergelege.

Die Fertigung von Rotorblättern ist sehr personalintensiv. Die Flügel werden überwiegend in Handarbeit hergestellt. „Der Personalkostenanteil beträgt dabei rund 50-60 Prozent“, sagt Dipl.-Ing. Lars Weigel, Technischer Leiter bei ROTEC. „Unsere Konkurrenz sitzt in Polen, Brasilien oder Mexiko, denn dort sind die Lohnkosten wesentlich geringer.“ Doch die ROTEC-Geschäftsleitung habe ein klares Bekenntnis zum Standort Lemwerder ausgesprochen: Man wolle sich unter anderem durch Qualität am Markt behaupten. „Wir werden künftig noch schneller und noch besser produzieren. Deswegen wollen wir ein paar Bereiche in der Produktion automatisieren“, sagt Weigel. „Damit sichern wir die Arbeitsplätze unserer Mitarbeiterinnen und Mitarbeiter vor Ort.“

Windenergieanlagen werden immer leistungsfähiger und damit auch größer und schwerer. Insbesondere die Offshore-Anlagen im Meer vor der Küste sind extremen Belastungen ausgesetzt. „Das stellt neue Anforderungen an die Werkstoffe und auch an die Herstellung: „Die heutigen Fertigungsverfahren stoßen da bisweilen an ihre Grenzen“, sagt BIK-Leiter Prof. Dr.-Ing. Dieter H. Müller. „Hier können wir unser Wissen einbringen. Die Erfahrungen aus der Industrie – Abeking & Rasmussen zum Beispiel arbeitet seit 1926 auf diesem Gebiet – und das hier im Norden konzentrierte wissenschaftliche Know-how bieten eine solide Basis für einen wirtschaftlichen Erfolg.“ Zudem ermögliche die räumliche Nähe eine effektive Zusammenarbeit, bestätigt Weigel. Kooperationen zwischen Industrie und Forschung wie die im Projekt PREBLADE zeigten die große Dynamik im norddeutschen Raum und rechtfertigten es, genau hier ein Kompetenzzentrum für Windenergie anzusiedeln.

Weitere Informationen:

Universität Bremen
Fachbereich Produktionstechnik
Bremer Institut für Konstruktionstechnik
Prof. Dr.-Ing. Dieter H. Müller, Tel.: 0421 218-55 31, E-Mail: ml@biba.uni-bremen.de
Dipl.-Ing. Ingo Gebauer, Tel.: 0421 218-49 91, E-Mail: igebauer@uni-bremen.de
Dipl.-Ing. Lars Weigel, Tel.: 0421 67 33-717, E-Mail: lweigel@abeking.com

Media Contact

Sabine Nollmann idw

Weitere Informationen:

http://www.uni-bremen.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Analyse von Partikeln des Asteroiden Ryugu liefert überraschende Ergebnisse

Eine kleine Landekapsel brachte im Dezember 2020 Bodenpartikel vom Asteroiden Ryugu zur Erde – Material aus den Anfängen unseres Sonnensystems. Gesammelt hatte die Proben die japanische Raumsonde Hayabusa 2. Geowissenschaftler…

Kollision in elf Millionen Kilometern Entfernung

Die im letzten Jahr gestartete NASA-Raumsonde DART wird am 27. September 2022 um 1.14 Uhr MESZ in elf Millionen Kilometer Entfernung von der Erde erproben, ob der Kurs eines Asteroiden…

Wie die Erderwärmung astronomische Beobachtungen beeinträchtigt

Astronomische Beobachtungen mit bodengebundenen Teleskopen sind extrem abhängig von lokalen atmosphärischen Bedingungen. Der menschgemachte Klimawandel wird einige dieser Bedingungen an Beobachtungsstandorten rund um den Globus negativ beeinflussen, wie ein Forschungsteam…

Partner & Förderer