Neuartige Vliesstoffe leiten elektrischen Strom, aber keine Wärme

Rasterelektronenmikroskopische Aufnahme von Fasern im neuen elektrogesponnenen Vliesstoff.
Bild: UBT

Hohes technologisches Potenzial.

Forscher*innen der Universität Bayreuth stellen in „Science Advances“ neuartige Vliesstoffe vor, die eine ungewöhnliche Kombination aus hoher elektrischer Leitfähigkeit und extrem niedriger Wärmeleitfähigkeit aufweisen. Die Vliese stellen einen Durchbruch in der Materialforschung dar: Mit einem einfach zu realisierenden Materialkonzept ist es gelungen, elektrische und thermische Leitfähigkeit zu entkoppeln. Die Vliese werden aus Kohlenstoff und siliziumbasierter Keramik im Elektrospinnverfahren hergestellt und sind attraktiv für technologische Anwendungen, zum Beispiel in der Energietechnik und Elektronik. Sie können kostengünstig im industriellen Maßstab hergestellt und verarbeitet werden.

Prof. Dr. Seema Agarwal (links) und Dr. Xiaojian Liao (rechts) bei der Analyse von rasterelektronenmikroskopischen Aufnahmen von Verbundvliesen, deren Fasern aus Kohlenstoff und Keramik bestehen.
Foto: UBT / Chr. Wißler

Normalerweise geht eine hohe elektrische Leitfähigkeit mit einer hohen Wärmeleitfähigkeit und eine niedrige Wärmeleitfähigkeit mit einer niedrigen elektrischen Leitfähigkeit einher. In vielen High-Tech-Industrien besteht jedoch ein wachsendes Interesse an multifunktionalen Materialien, die eine gute elektrische Leitfähigkeit mit einer geringen Wärmeleitfähigkeit verbinden. Mit diesem strategischen Ziel wurden beispielsweise dichte anorganische Materialien, konjugierte Polymere und Legierungen entwickelt. Doch im Bereich der flexiblen, faltbaren Materialien ist es immer noch eine große Herausforderung, eine extrem niedrige Wärmeleitfähigkeit mit einer hohen elektrischen Leitfähigkeit zu kombinieren.

Das Forscherteam an der Universität Bayreuth hat jetzt ein innovatives Konzept entwickelt, um diese Herausforderung zu lösen: Neue elektrogesponnene Vliese werden aus Kohlenstoff und siliziumbasierter Keramik hergestellt, sie bestehen aus Fasern mit einem Durchmesser zwischen 500 und 600 Nanometern. Jede Faser enthält eine Matrix aus Kohlenstoff. Darin sind winzige Bereiche, die nur wenige Nanometer groß und mit Keramik gefüllt sind, gleichmäßig verteilt. Diese Keramikphasen bilden winzige „Inseln“ im „Meer“ der Kohlenstoffmatrix und haben entgegengesetzte, sich ergänzende Wirkungen. Die Kohlenstoffmatrix ermöglicht den Elektronentransport in den Fasern und damit eine hohe elektrische Leitfähigkeit, während die Keramikphasen die Ausbreitung von Wärmeenergie ebenso wirksam verhindern. Das liegt daran, dass die Grenzfläche zwischen der nanoskaligen Keramik und der Kohlenstoffmatrix sehr stark ist, während die Poren des Vliesstoffs sehr klein sind. Infolgedessen kommt es zu einer starken Streuung von Phononen, den kleinsten physikalischen Einheiten von Schwingungen, die durch thermische Energie verursacht werden. Ein kontinuierlicher gerichteter Wärmefluss findet nicht statt.

Wie ungewöhnlich die Kombination aus hoher elektrischer und extrem niedriger thermischer Leitfähigkeit ist, zeigt ein Vergleich mit rund 4.000 anderen Materialien aller Art, darunter Keramiken, Kohlenstoffe, natürliche Materialien, synthetische Polymere, Metalle, Gläser und verschiedene Verbundstoffe. Elektronentransport und thermische Energieisolierung sind bei dem neuen elektrogesponnenen Faserverbundwerkstoff stärker gekoppelt als bei den anderen Materialien.

„Unsere elektrogesponnenen Vliese vereinen hochattraktive multifunktionale Eigenschaften, die normalerweise auf verschiedene Materialklassen verteilt sind: hohe elektrische Leitfähigkeit, thermische Isolierung, wie man sie von Polymerschäumen kennt, sowie Nichtentflammbarkeit und Hitzebeständigkeit, wie sie für Keramiken charakteristisch sind. Die Fasern basieren auf einem einfachen Materialkonzept und wurden aus handelsüblichen Polymeren hergestellt,“ sagt Erstautor Dr. Xiaojian Liao, Postdoktorand für Makromolekulare Chemie an der Universität Bayreuth. „Wir sind überzeugt, dass sich unsere neuen Fasern für mehrere Anwendungsbereiche eignen: zum Beispiel in den Bereichen Energiemanagement, batteriebetriebene Elektromobilität, intelligente Textilien oder Luft- und Raumfahrt,“ sagt Prof. Dr. Seema Agarwal, Professorin für Makromolekulare Chemie an der Universität Bayreuth und eine der korrespondierenden Autor*innen der neuen Studie. Die interdisziplinäre Zusammenarbeit im Bayreuther Forschungsteam, mit Expertise in den Bereichen keramische Werkstoffe, Polymere, Elektrospinnen, Physikalische Chemie und Elektronenmikroskopie, hat diesen großen Forschungserfolg ermöglicht.

Interdisziplinäre Zusammenarbeit auf dem Bayreuther Campus

Bei der Entwicklung des neuen Materials und den erforderlichen Vorstudien haben Bayreuther Wissenschaftler*innen aus unterschiedlichen Forschungszentren zusammengearbeitet. Beteiligt waren das Bayerische Polymerinstitut (BPI), das Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), das Bayerische Geoinstitut (BGI) und das Bayerische Zentrum für Batterietechnik (BayBatt).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Seema Agarwal
Makromolekulare Chemie II
Universität Bayreuth
Telefon: +49 (0)921 55-3397
E-Mail: agarwal@uni-bayreuth.de

Originalpublikation:

Xiaojian Liao, Jakob Denk, Thomas Tran, Nobuyoshi Miyajima, Lothar Benker, Sabine Rosenfeldt, Stefan Schafföner, Markus Retsch, Andreas Greiner, Günter Motz, Seema Agarwal: Extremely low thermal conductivity and high electrical conductivity of sustainable carbonceramic electrospun nonwoven materials. Science Advances (2023), Vol 9, Issue 13, DOI: https://www.science.org/doi/10.1126/sciadv.ade6066

https://www.uni-bayreuth.de/

Media Contact

Christian Wißler Pressestelle
Universität Bayreuth

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer