Jacobs University entwickelt „Gehirne“ für lernfähige Roboter in internationalem EU-Projekt AMARSi

Mechanisches Kind: Der vom EU RobotCub Konsortium entworfene iCub Roboter wird den AMARSi Forschern als Plattform für ihre Untersuchungen dienen <br>Copyright: EU RobotCub <br>

Anders als bisherige Roboter sollen sie sich natürlich bewegen und ihr Verhaltensrepertoire durch Lernen und Umweltinteraktion erweitern. Die EU fördert das Projekt über vier Jahre mit 7 Mio. Euro. Die Jacobs Machine Learning Group unter Leitung von Prof. Herbert Jaeger erhält 526.000 Euro für die Entwicklung der Steuermodule, die sich in Struktur und Funktion an menschlichen Gehirnen orientieren.

Sie sehen aus wie Hunde, Affen oder gar wie Kinder – moderne Roboter passen sich ihrer Umgebung an, nicht nur äußerlich. Auch in ihren Bewegungen und im Verhalten werden sie Tieren und Menschen immer ähnlicher, können Greifen und Treppensteigen, servieren höflich eine Tasse Tee oder trauen sogar Brautpaare. Doch auch nach Jahrzehnten intensiver Entwicklung ist es bisher nicht gelungen, einen Roboter zu entwickeln, dessen Verhaltensrepertoire und motorische Fähigkeiten an die seiner biologischen Vorbilder heranreicht: Moderne Roboter sind entweder in der Lage, viele verschiedene Bewegungsmuster ausführen, diese jedoch sehr unflexibel und stereotyp; oder sie sind auf eine einzige Bewegung wie das Laufen spezialisiert und können sich innerhalb dieser Bewegung an neue Situationen anpassen, beispielsweise wenn plötzlich ein Hindernis auftaucht, das es zu überwinden gilt.

Einen qualitativen Sprung in der Beweglichkeit und dem Verhalten von Robotern verspricht der Ansatz des jetzt gestarteten EU-Projektes AMARSi: Zwölf Forschungsteams unterschiedlicher Disziplinen aus Europa, Israel, Japan und den USA haben sich zusammengeschlossen, um Roboter zu entwickeln, die in ihren Bewegungen und ihrem Verhalten die Natürlichkeit und Flexibilität der biologischen Welt kopieren. Die Kombination verschiedener Forschungsansätze und Methoden aus den Bereichen Computerwissenschaften, Maschinelles Lernen, Neurowissenschaften, Verhaltenspsychologie und Regelungstechnik soll möglich machen, was bisher nicht gelungen ist: Einen Roboter zu entwickeln, der sein Bewegungsrepertoire selbstständig erweitern kann. Wie Menschen und Tiere solle er in der Lage sein, durch Interaktion mit seiner Umgebung und durch Imitieren seiner menschlichen Arbeitskollegen ein reichhaltiges Repertoire von Bewegungsmustern zu erlernen und situationsadäquat zu verändern anstatt vorprogrammierten Abläufen zu folgen.

Das internationale Forscherteam will so viel wie möglich von menschlichen Gehirnen und den am Erwerb von motorischen Fähigkeiten beteiligten Prozessen lernen, da Menschen das flexible Lernen und Anpassen an unbekannte Situationen spielend beherrschen. Im Rahmen des AMARSi Projektes entwickelt die Jacobs Machine Learning Group unter der Leitung von Prof. Herbert Jaeger daher neuartige Steuermodule, die sich am Aufbau und der Funktionsweise menschlicher Gehirne orientieren.

Jaeger und sein Team werden künstliche neuronale Netzwerke zur Steuerung der Roboter einsetzen. Bewegt sich die Maschine, werde die entstehenden Daten analysiert und die Verbindungen zwischen den künstlichen Neuronen dynamisch angepasst und verstärkt – vergleichbar mit der Reorganisation des zentralen Nervensystems von Säugetieren beim Lernen.

„Eine besondere Herausforderung stellt das neuartige Design der Extremitäten dar“, sagt Jaeger. Anders als herkömmliche Roboter werden die AMARSi Roboter mit weichen, elastischen Gliedmaßen und Muskeln ausgestattet, die Getriebe und Stellmotoren ersetzen. Stöße können dadurch besser abgefedert werden und die Bewegungen der Roboter werden fließender. Doch je mehr Bewegungsfreiheit der Roboter hat, desto höher sind die Anforderungen an die Regelungstechnik, welche die Bewegungen kontrolliert. „Noch wissen wir nicht, wie man elastische Gliedmaßen mit viel Bewegungsfreiheit exakt steuern kann“, erklärt Jaeger. „Unsere Kontrollarchitektur wird weit über das bisher da gewesene hinausgehen, um dieses Problem zu lösen.“

Neben der Jacobs University beteiligen sich Forschergruppen der Universitäten Bielefeld, Tübingen und Ghent, des Ecole Polytechnique Fédérale de Lausanne, der IRCCS Fondazione Santa Lucia, der ETH Zürich, der Fondazione Istituto Italiano di Tecnologia, des israelischen Weizmann Institute of Science sowie Partner aus den USA und Japan am Projekt.

„Wir erwarten eine Veränderung im Hinblick auf die Einsetzbarkeit der neuen Robotergeneration in doppelter Hinsicht“, sagt Jaeger. „Zum einen werden Roboter mit großem Bewegungsrepertoire vielseitiger einsetzbar sein als ihre Vorgänger, sei es im Haushalt oder der Industrie.“ So könnten sie beispielsweise Arbeiten rund ums Haus oder Aufgaben in der Krankenpflege übernehmen, ihre menschlichen Kollegen in der Produktion oder beim Handwerk unterstützen oder für riskante Aufgaben wie die Überwachung von Objekten und die Arbeit in gefährlichen Umgebungen eingesetzt werden. „Zum anderen werden sie sich durch die Natürlichkeit ihrer Bewegungen und ihre Lernfähigkeit in nie da gewesener Weise in den menschlichen Alltag einfügen.“

*Fragen zum AMARSi Projekt beantwortet:*

Prof. Dr. Herbert Jaeger | Professor of Computational Science
Tel.: 0 421 200 3215 | h.jaeger@jacobs-University.de

Media Contact

Dr. Kristin Beck idw

Weitere Informationen:

http://www.jacobs-University.de

Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung

Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer