Touchscreens: Angriff aus der Ladebuchse

Das Data Acquisition Device (DAQ) wird genutzt um den Angriff zu synchronisieren, der Signal Generator erstellt daraufhin das Angriffssignal welches durch den Verstärker (Amplifier) an das Gerät des Nutzers geschickt wird.
Bild: Yan Jiang

Internationales Forschungsteam manipuliert mit „Ghost Touch“ Mobilgeräte.

Touchscreens von Mobilgeräten lassen sich über Ladekabel und Netzteile angreifen und manipulieren. Das haben Forscher am System Security Lab der TU Darmstadt gemeinsam mit einem chinesischen Forscherteam herausgefunden. Mehrere Smartphones und eigenständige Touchscreen-Panels konnten im Praxistest durch simulierte Berührungen, die „Ghost Touchs“, kompromittiert werden. Die Ergebnisse wurden auf dem diesjährigen „IEEE Symposium on Security and Privacy“ vorgestellt.

Die Forschenden der TU Darmstadt und der der Zhejiang-Universität in Hangzhou führten Angriffe auf kapazitive Touchscreens über Ladekabel und Netzteile aus und deckten damit eine neue Angriffsmöglichkeit auf Mobilgeräte auf. Ähnlich wie in ihrem vorangegangenen Forschungsprojekt „GhostTouch“ waren die Forschenden in der Lage, falsche Berührungen, die sogenannten „Ghost Touchs“, auf mehreren Touchscreens zu erzeugen und das Gerät darüber zu manipulieren.

Das internationale Forschungsteam musste dabei zwei Herausforderungen überwinden. Erstens: die kapazitiven Touchscreens über ein reines Ladekabel zu beeinflussen, ohne die Hardware zu beschädigen. Elektronische Geräte sind normalerweise mit widerstandsfähigen Filtern in den Stromkreisen ausgestattet, um eine stabile Stromversorgung zu gewährleisten.

Es war notwendig, einen Angriff zu konzipieren der auch funktioniert, wenn Nutzerinnen oder Nutzer in öffentlichen Räumen aus Datenschutz- und Sicherheitsgründen ein reines Ladekabel ohne Datenkanal verwenden. Zweitens mussten die Berührungspunkte gezielt kontrolliert werden, um das Gerät zu manipulieren. Dies war nötig, damit zum Beispiel kompromittierte Bluetooth-Verbindungen aufgebaut, Nutzende durch einen Telefonanruf abgehört oder Malware empfangen werden können.

Im Versuchsaufbau wurde eine kompromittierte öffentliche Ladestation als Ausgangspunkt des Angriffes angenommen. Dabei kam eine manipulierte USB-Ladebuchse zum Einsatz, deren Stromversorgung aus der Ferne gesteuert werden kann. Solche öffentlich zugänglichen Ladestationen finden sich oft in Cafés, in Krankenhäusern, Hotels oder an Flughäfen und Bahnhöfen. Wer sein Smartphone oder Tablet an dieser Ladestation lädt, initiiert damit den Angriff, der zu Beginn als normales Ladesignal getarnt ist. Angreifer oder Angreiferin messen die Abtastfrequenz des Touchscreens über die Ladeverbindung, um daran das Angriffssignal anzupassen. Darüber hinaus ist keinerlei Datenverbindung notwendig.

Über die Ladeleitung wird ein ausgeklügeltes Angriffssignal in die GND-Leitung, also in die Masseleitung injiziert. Das Angriffssignal, das über die USB-Schnittstelle eingespeist wird, beeinflusst die Stromversorgung und wird aufgrund fehlender Filterung in ein Rauschsignal umgewandelt. Mithilfe dieser Rauschsignale können drei verschiedene Angriffseffekte erzielt werden, die mit dem typischen Aufbau kapazitiver Bildschirme zusammenhängen.

Hauptbestandteil eines Touchscreens ist eine Matrix aus Zeilen und Spalten von leitenden Elektroden (TX) und Sensorelektroden (RX), deren Kreuzungspunkte als gegenseitige Kapazität bezeichnet werden. Berührt man nun den Bildschirm, bildet der Finger eine zusätzliche Kapazität mit den Elektroden und ändert die äquivalente Kapazität, wodurch ein Berührungsereignis entsteht und das Smartphone gesteuert werden kann.
Den Forschenden ist es gelungen, sowohl entlang der TX-Elektroden als auch entlang der RX-Elektroden gezielte Geisterberührungen zu erzeugen, ohne dass es zu einem physischen Kontakt kam. Darüber hinaus konnte der Bildschirm so manipuliert werden, dass er auf reale Berührungen nicht mehr reagiert.

Zusätzlich zu den Angriffsszenarien beschreibt das internationale Forschungsteam auch mögliche software- sowie hardware-basierte Gegenmaßnahmen in seiner Arbeit, die auf dem renommierten „IEEE Symposium on Security and Privacy 2022“ veröffentlicht wurde: Neben einem hardware-basierten Funktionstool, welches das Gleichtakt-Angriffssignal stört, können softwarebasiert die veränderte Kapazität erkannt oder in Anlehnung an den Fingerabdruck-Mechanismus zuverlässige Ladestationen identifiziert werden.

Das Paper:
https://www.computer.org/csdl/proceedings-article/sp/2022/131600b537/1CIO7Ic5kR2

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland und steht für exzellente und relevante Wissenschaft. Globale Transformationen – von der Energiewende über Industrie 4.0 bis zur Künstlichen Intelligenz – gestaltet die TU Darmstadt durch herausragende Erkenntnisse und zukunftsweisende Studienangebote entscheidend mit.
Ihre Spitzenforschung bündelt die TU Darmstadt in drei Feldern: Energy and Environment, Information and Intelligence, Matter and Materials. Ihre problemzentrierte Interdisziplinarität und der produktive Austausch mit Gesellschaft, Wirtschaft und Politik erzeugen Fortschritte für eine weltweit nachhaltige Entwicklung.
Seit ihrer Gründung 1877 zählt die TU Darmstadt zu den am stärksten international geprägten Universitäten in Deutschland; als Europäische Technische Universität baut sie in der Allianz Unite! einen transeuropäischen Campus auf. Mit ihren Partnern der Rhein-Main-Universitäten – der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz – entwickelt sie die Metropolregion Frankfurt-Rhein-Main als global attraktiven Wissenschaftsraum weiter. www.tu-darmstadt.de

MI-Nr. 46/2022, Richard Mitev/Ahmad-Reza Sadeghi/sip

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Ahmad-Reza Sadeghi, Leiter des System Security Lab
E-Mail: ahmad.sadeghi@trust.tu-darmstadt.de

Originalpublikation:

https://www.computer.org/csdl/proceedings-article/sp/2022/131600b537/1CIO7Ic5kR2

https://www.tu-darmstadt.de/universitaet/aktuelles_meldungen/einzelansicht_376384.de.jsp

Media Contact

Silke Paradowski Science Communication Centre - Abteilung Kommunikation
Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer