Künstliche Intelligenz bringt Licht ins Dunkel

Illustration zur Studie, die auf einem der Cover von "Chemical Science" erschien: Künstliche neuronale Netze helfen, Simulationen von photoinduzierten Prozessen drastisch zu beschleunigen. © Julia Westermayr, Philipp Marquetand

Maschinelles Lernen spielt in der chemischen Forschung eine immer größere Rolle, z.B. bei der Entdeckung und Entwicklung neuer Moleküle und Materialien. In dieser Studie zeigen die ForscherInnen aus Wien und Berlin, wie künstliche Intelligenz effiziente photodynamische Simulationen ermöglicht.

Um photoinduzierte Prozesse, wie sie etwa im Rahmen der Photosynthese, der visuellen Wahrnehmung des Menschen oder der Entstehung von Hautkrebs ablaufen, zu verstehen, „müssen wir die Bewegung der Moleküle unter Einwirkung von UV-Licht verstehen. Dazu benötigen wir neben klassischen mechanischen Berechnungen vor allem auch die Quantenmechanik, die extrem rechen- und damit auch kostenintensiv ist“, sagt Studienautor Philipp Marquetand vom Institut für Theoretische Chemie.

Mit den bisherigen Verfahren konnten ForscherInnen nur die allerschnellsten photoinduzierten Prozesse im Bereich von Pikosekunden (1 Pikosekunde = 0,000 000 000 001 Sekunden) – bei Rechenzeiten von mehreren Monaten – vorhersagen. Das neue Verfahren ermöglicht mittels künstlicher Intelligenz Simulationen über längere Zeiträume, im Bereich einer Nanosekunde (1.000 Pikosekunden), bei wesentlich weniger Rechenzeit.

Lernende neuronale Netze

Bei ihrem Ansatz verwenden die ForscherInnen künstliche neuronale Netze, also mathematische Modelle, die die Funktionsweise unseres Gehirns imitieren. „Wir bringen unserem neuronalen Netz die komplexen quantenmechanischen Beziehungen bei, indem wir vorher ein paar wenige Rechnungen durchführen, und das Wissen an das neuronale Netz weitergeben“, sagt Erstautorin der Studie und uni:docs-Stipendiatin Julia Westermayr vom Institut für Theoretische Chemie.

Durch das angeeignete Wissen können die selbstlernenden neuronalen Netze dann im Rahmen der molekulardynamischen Simulationen schneller vorhersagen, was passieren wird.

Im Rahmen der Studie führten die ForscherInnen photodynamische Simulationen eines Testmoleküls namens Methylenimmoniumkation – eines Bausteines des Moleküls Retinal, das unsere Sehprozesse ermöglicht – durch. „Nach zwei Monaten Rechenzeit konnten wir die Reaktion im Zeitraum von einer Nanosekunde abbilden; auf Basis bisheriger Verfahren hätte die Simulation zirka 19 Jahre gedauert“, so Doktorandin Julia Westermayr.

Proof-of-Concept

Im Bereich von Nanosekunden laufen ein Großteil photochemischer Prozesse ab: „Mit unserer Strategie stoßen wir in eine neue Dimension für Vorhersagen vor. Das von uns präsentierte Vorgehen kann man im Prinzip auf verschiedenste kleinere Moleküle – darunter DNA-Bausteine und Aminosäuren – anwenden“, sagt Studienautor Philipp Marquetand.

In einem nächsten Schritt wollen die ForscherInnen ihr Verfahren nutzen, um die Aminosäure Tyrosin zu beschreiben. Sie kommt in den meisten Proteinen vor und es besteht der Verdacht, dass ihre Schädigung unter Einfluss von Licht Blindheit und Hautalterung begünstigt. Das Verfahren rücke, so die Studienautoren, aber ganz allgemein die Vorhersage von lichtgesteuerten Prozessen in jeglicher Hinsicht, etwa auch von Materialalterung oder von photosensitiven Medikamenten, in greifbare Nähe.

Publikation in „Chemical Science“ der Royal Society of Chemistry
Machine learning enables long time scale molecular photodynamics simulations, Michael Gastegger, Maximilian F. S. J. Menger, Sebastian Mai, Leticia González and Philipp Marquetand
Chemical Science, 2019.
https://doi.org/10.1039/C9SC01742A

Dieser Artikel wurde als Open Access-Publikation veröffentlicht.

Priv.-Doz. Dr. Philipp Marquetand
Institut für Theoretische Chemie
Universität Wien
1090 – Wien, Währinger Straße 17
+43-1-4277-527 64
philipp.marquetand@univie.ac.at

https://doi.org/10.1039/C9SC01742A

Media Contact

Stephan Brodicky Universität Wien

Weitere Informationen:

https://www.univie.ac.at/

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Selbstabbildung eines Moleküls durch seine eigenen Elektronen

Vermessung der Atombewegungen während einer molekularen Vibration Eines der langfristigen Ziele der Forschung zu lichtinduzierter Dynamik von Molekülen ist die direkte und eindeutige Beobachtung von zeitabhängigen Änderungen der molekularen Struktur,…

Intelligente Nasen

Kann man mit einer künstlichen Nase sogar CoVID-19-Erkrankungen „riechen“? Unter dem Motto „Intelligente Nasen“ ist noch bis 18. September 2020 ein an der TU Dresden organisierter internationaler Workshop dem künstlichen…

Kollisions-Filme mit erneuertem Teilchen-Detektor am CERN

Das ALICE-Experiment am Teilchenbeschleuniger CERN in Genf soll neue Erkenntnisse über einen extrem heißen und dichten Materiezustand bringen, das Quark-Gluon-Plasma. Wenige Millionstel Sekunden nach dem Urknall lag die gesamte Materie…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close