Automatisierte Qualitätsprüfung von Leiterplatten mit Künstlicher Intelligenz

Wuppertaler Forschende arbeiten an einer automatisierten Qualitätsprüfung von Leiterplatten mit Künstlicher Intelligenz.
(c) Bergische Universität Wuppertal

In einer immer stärker digitalisierten Welt sind Leiterplatten nicht mehr wegzudenken – nahezu jedes elektronische Gerät enthält eine oder mehrere. Die Qualitätsprüfung während ihrer Herstellung zu optimieren, haben sich Wissenschaftler*innen der Bergischen Universität Wuppertal zum Ziel gesetzt. Dafür entwickeln sie eine innovative Prüfanlage, die Fehler auf Basis Künstlicher Intelligenz (KI) automatisch erkennt.

Leiterplatten durchlaufen im Produktionsprozess mehrere Stadien, die jeweils eine optische Inspektion erfordern, um Fehler frühzeitig zu erkennen. Besonders anspruchsvoll ist die Prüfung unbestückter Leiterplatten nach dem Verzinnungsprozess. Hier lösen Reflexionen an bestimmten Lötstellen falsche Fehlermeldungen aus, die zum Aussortieren einer eigentlich intakten Leiterplatte führen. Ein Problem, das mit bisherigen Prüfanlagen nicht behoben werden konnte.

Neuartiges Kamerakonzept

„Aktuell gibt es keine Technologie, die unbestückte Platinen automatisch inspizieren kann. Die komplexen Reflexionen der Lötstellenoberflächen erschweren eine genaue Fehlerbewertung erheblich“, erklärt Projektleiter Prof. Dr.-Ing. Stefan Bracke vom Lehrstuhl für Zuverlässigkeitstechnik und Risikoanalytik. In Kooperation mit der Pentagal Chemie und Maschinenbau GmbH und seinem Wissenschaftlichen Mitarbeiter Jannis Pietruschka will er ein neuartiges Inspektionskonzept entwickeln, das verschiedene Blickwinkel aufnimmt – und damit in puncto Reflexionen nicht mehr so anfällig ist. Die Defekterkennung in den Aufnahmen erfolgt dann durch KI-basierte Auswertungs- und Prognosealgorithmen, um eine generalisierte Fehlererkennung ohne Referenzmuster zu ermöglichen.

Die Qualitätsprüfung soll direkt nach dem Verzinnungsprozess stattfinden, bevor weitere Bauteile auf den Platinen montiert werden. Dies spart Ressourcen und verringert den Ausschuss erheblich. „Das Projekt markiert einen wichtigen Schritt in der Automatisierung und Digitalisierung von Produktionsprozessen und bietet großes Potenzial, die Effizienz und Nachhaltigkeit in der Elektronikfertigung zu steigern“, so Stefan Bracke.

Umfangreiche Testreihen in prototypischer Prüfanlage

Gemeinsam mit Pentagal wird die vom Lehrstuhl entwickelte Software in eine prototypische Prüfanlage integriert und in umfassenden Testreihen auf ihre Zuverlässigkeit geprüft. Pentagal übernimmt die Konstruktion der mechanischen und mechatronischen Anlagenkomponenten und plant, das System künftig als Modul in ihre Heißluftverzinnungsanlagen zu integrieren.

Das Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) mit 216.683 Euro über zwei Jahre gefördert.

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Stefan Bracke
Lehrstuhl für Zuverlässigkeitstechnik und Risikoanalytik (LZR)
Telefon 0202/439-2064
E-Mail bracke@uni-wuppertal.de

https://www.uni-wuppertal.de/de/news/detail/automatisierte-qualitaetspruefung-von-leiterplatten-mit-kuenstlicher-intelligenz/

Media Contact

Denise Haberger Pressestelle
Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Informationstechnologie

Neuerungen und Entwicklungen auf den Gebieten der Informations- und Datenverarbeitung sowie der dafür benötigten Hardware finden Sie hier zusammengefasst.

Unter anderem erhalten Sie Informationen aus den Teilbereichen: IT-Dienstleistungen, IT-Architektur, IT-Management und Telekommunikation.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung des thermodynamik-inspirierten Laserstrahlschmietungsprozesses in der Forschung zur optischen Thermodynamik.

Thermodynamisch inspirierte Laserstrahlsformung entfacht einen Hoffnungsschimmer

Inspiriert von Ideen aus der Thermodynamik haben Forscher der Universität Rostock und der University of Southern California eine neue Methode entwickelt, um hochenergetische Laserstrahlen effizient zu formen und zu kombinieren….

Kovalentes Organisches Rahmenwerk COF-999 Struktur zur CO2-Absorption

Ein Atem frischer Luft: Fortschrittliche Quantenberechnungen ermöglichen COF-999 CO₂-Adsorption

Quantenchemische Berechnungen an der HU ermöglichen die Entwicklung neuer poröser Materialien, die durch eine hohe Absorptionskapazität für CO₂ gekennzeichnet sind. Klimaforscher sind sich einig: Um die Klimakrise zu überwinden, müssen…

Satellitenbild zeigt Vegetationsverlust durch mehrjährige Dürren

Warum globale Dürren, die mit dem Klimawandel verbunden sind, uns beeinträchtigen

Eine von der Eidgenössischen Forschungsanstalt WSL (Schweizerisches Bundesinstitut für Wald, Schnee und Landschaft) geleitete Studie zeigt, dass die Anzahl der langanhaltenden Dürren in den letzten 40 Jahren besorgniserregend zugenommen hat….