Wissenschaftler entdecken neue Formen von Feldspat

Die Kristallstruktur des Feldspats Anorthit bei Normalbedingungen (links) und die neu entdeckte Hochdruck-Variante (rechts). Die Silizium- und Aluminiumatome bilden unter Normalbedingungen Tetraeder (gelb und blau) mit je vier Sauerstoffatomen (rot) an den Ecken. Unter Hochdruck formen sich auch Vielecke mit fünf und sechs Sauerstoffatomen. Kalziumatome (grau) ordnen sich dazwischen an. Die schwarzen Linien bezeichnen die sogenannte Elementarzelle, die kleinste Einheit des Kristallsgitters. Bild: DESY, Anna Pakhomova

Feldspat bezeichnet eine Gruppe von sehr häufigen gesteinsbildenden Mineralien, die etwa 60 Prozent der Erdkruste ausmachen. Die häufigsten Mitglieder dieser Gruppe sind Anorthit (CaSi₂Al₂O₈), Albit (NaAlSi₃O₈) und Mikroklin (KAlSi₃O₈).

Unter Normalbedingungen sind die Aluminium- und Siliziumatome im Kristall jeweils an vier Sauerstoffatome gebunden und bilden AlO₄- und SiO₄-Tetraeder. Diese Dreieckspyramiden bestehen aus vier dreieckigen Seitenflächen mit jeweils einem Aluminium- oder Siliziumatom in der Mitte umgeben von vier Sauerstoffatomen an den Ecken.

„Das Verhalten von Feldspat unter zunehmendem Druck und steigender Temperatur ist bereits früher intensiv untersucht worden, und zwar besonders im Hinblick auf seine Stabilität im Erdinneren“, erklärt Pakhomova. „Es ist bekannt, dass Feldspate nur bei Drücken von bis zu drei Gigapascal entlang des üblichen Druck-Temperatur-Profils der Erde stabil sind, während sie sich bei höheren Drücken in dichtere Mineralien zersetzen.“

Drei Gigapascal (GPa) entsprechen dem 30.000-Fachen des normalen Luftdrucks auf Meereshöhe. „Unter kühlen Bedingungen können Feldspate allerdings auch bei Drücken von mehr als drei Gigapascal erhalten bleiben“, fügt Pakhomova hinzu. „Frühere Strukturuntersuchungen von Feldspat unter Hochdruck haben gezeigt, dass bei Raumtemperatur das Tetraeder-Gerüst bei Drücken bis zu zehn Gigapascal Bestand hat.“

Die Wissenschaftler setzten nun gewöhnlichen Feldspat einem Druck von bis zu 27 Gigapascal aus und analysierten die Struktur des Minerals an der Extreme Conditions Beamline P02.2 von DESYs Röntgenlichtquelle PETRA III und an der Advanced Photon Source (APS) in Chicago. „Bei Drücken über zehn Gigapascal haben wir neue Hochdruckformen von Anorthit, Albit und Mikroklin entdeckt“, berichtet Pakhomova.

„Die Phasenübergänge werden durch starke geometrische Verzerrungen der AlO₄- und SiO₄-Tetraeder ausgelöst. Dies führt dazu, dass die Aluminium- und Siliziumatome zusätzliche Nachbaratome erhalten und sich dichtere Gerüste auf der Basis von Polyedern bilden, bei denen ein Aluminium- oder Siliziumatom an vier, fünf oder sechs Sauerstoffatome gebunden ist.“

Um die Stabilität der entdeckten Hochdruckvarianten bei hohen Temperaturen zu untersuchen und damit auch ihre Chance, im Erdinneren zu existieren, führten die Wissenschaftlerinnen und Wissenschaftler am Bayerischen Geoinstitut in Bayreuth eine Reihe von Hochdruck-Hochtemperatur-Experimenten durch. Dabei zeigte sich, dass die Hochdruckvariante von Anorthit unter einem Druck von 15 Gigapascal auch bei Temperaturen von bis zu 600 Grad Celsius noch stabil ist.

„Solche Druck-Temperatur-Bedingungen herrschen auf der Erde etwa in den Subduktionszonen, das sind Regionen, in denen zwei Erdplatten aufeinandertreffen und eine sich unter die andere schiebt“, erklärt Dubrovinsky.

„In solchen geologischen Umgebungen werden Feldspate zusammen mit anderem Krustenmaterial von der absteigenden Platte in die Tiefe der Erde befördert. Unsere Ergebnisse deuten darauf hin, dass Hochdruckphasen von Feldspat in kalten Subduktionszonen noch in Tiefen stabil sein könnten, die dem oberen Erdmantel entsprechen, sofern die Temperatur nicht über 600 Grad ansteigt. Dies könnte die Dynamik und die Entwicklung kalt abtauchender Erdplatten beeinflussen und seismische Signaturen veränderm.“

An der Arbeit waren Wissenschaftlerinnen und Wissenschaftler der Universität Bayreuth, der Staatlichen Universität Sankt Petersburg, der Universität von Chicago, des Bayerischen Geoinstituts und von DESY beteiligt.

DESY zählt zu den weltweit führenden Teilchenbeschleuniger-Zentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums.

Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung: Sie erzeugen das stärkste Röntgenlicht der Welt, bringen Teilchen auf Rekordenergien und öffnen neue Fenster ins Universum.

DESY ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands, und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Dr. Anna Pakhomova
DESY
anna.pakhomova@desy.de

Prof. Leonid Dubrovinsky
Bayerisches Geoinstitut, Universität Bayreuth
Telefon: +49-921-553736
Leonid.Dubrovinsky@Uni-Bayreuth.de

Originalveröffentlichung:
Polymorphism of feldspars above 10 GPa; Anna Pakhomova, Dariia Simonova, Iuliia Koemets, Egor Koemets, Georgios Aprilis, Maxim Bykov, Liudmila Gorelova, Timofey Fedotenko, Vitali Prakapenka, Leonid Dubrovinsky; „Nature Communications“, 2020; DOI: 10.1038/s41467-020-16547-4

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1840&am… – Pressemitteilung im Web

Media Contact

Dr. Thomas Zoufal idw - Informationsdienst Wissenschaft

All latest news from the category: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Back to home

Kommentare (0)

Schreiben Sie einen Kommentar

Newest articles

TV-Doku: Maschine mit Gefühl

Können Computer künftig nicht nur Gefühle empfinden, sondern auch Bewusstsein entwickeln? Ist also Leben in der Datenwelt möglich – oder bleiben diese Entitäten auch mit neuesten Technologien wie neuromorphen Computern…

Wie das Stutzen des Zytoskeletts die Zelle bewegt

Unsere Zellen zeichnen sich durch Stabilität aus und sind dennoch hoch flexibel. Sie können ihre Form verändern und sich sogar im Gewebe bewegen. Die dafür benötigten Kräfte entstehen durch ein…

Meilenstein in der Energiewende

Wissenschaftler:innen der TU Dresden bauen einzigartigen Energiespeicher. In Boxberg/O.L. ist ein Rotationskinetischer Speicher (RKS) in Erstbetrieb gegangen, dessen Speicherkapazität seinesgleichen sucht. Nicht nur groß, sondern auch zukunftsorientiert ist die Entwicklung…

Partner & Förderer