Topografie beeinflusst die Biodiversität im Gebirge

Voneinander isolierte Bergspitzen und Täler (grau/weiss) und viel stärker verbundene mittlere Höhenlagen (gelb-roter Gradient). Bild: ETH Lausanne

Gebirgsregionen sind Lebensraum für zahlreiche Tier- und Pflanzenarten. Den grössten Artenreichtum verzeichnen typischerweise mittlere Höhenlagen. Lange Zeit hatte die Wissenschaft keine schlüssige Erklärung dafür.

Als mögliche Gründe wurden niedrige Temperaturen in hohen oder störende Einflüsse durch den Menschen in tiefen Lagen angeführt. Nun liefern neue, in der Fachzeitschrift Proceedings of the National Academy of Sciences veröffentlichte Forschungsresultate eine andere Begründung:

Die meisten Arten leben in mittleren Höhenlagen, weil dort ähnliche Lebensräume am grössten und am stärksten miteinander verbunden sind. Verschieben sich Arten in Folge der Anpassung an wärmere klimatische Bedingungen in höhere Lagen, treffen sie auf Lebensräume mit völlig anderen topografischen Gegebenheiten.

Grösster Artenreichtum in mittleren Höhenlagen

Wie viele Arten in einer bestimmten Region nebeneinander existieren können, ist von zahlreichen Faktoren abhängig. In grossen Gebieten mit ähnlichen Eigenschaften finden sich in der Regel mehr Arten als in kleinen Gebieten. Sind mehrere ähnliche Lebensräume miteinander verbunden, erhöht sich die Biodiversität zusätzlich.

In Gebirgsregionen spielen zudem Faktoren wie Temperatur, biologische Produktivität und Exposition eine grosse Rolle. Forschende der ETH Lausanne, der Universität Zürich und der Eidgenössischen Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (Eawag) haben die im Flachland gewonnenen Erkenntnisse auf Gebirgsregionen übertragen und haben so eine neue Erklärung dafür gefunden, weshalb der Artenreichtum in mittleren Höhenlagen am grössten ist.

«In Gebirgsregionen bilden Gipfel und Täler isolierte Lebensräume – ähnlich wie Inseln im Meer. Die Gebiete in mittleren Höhenlagen sind dagegen stark miteinander verbunden», erklärt Enrico Bertuzzo, Forscher am Labor für Ökohydrologie der ETH Lausanne und Erstautor der Studie. «Je grösser und je vernetzter ein Lebensraum ist, desto höher ist die Biodiversität, während in isolierten Gebieten nur wenige Arten anzutreffen sind. Wir nahmen daher an, dass die Topografie selbst eine Schlüsselrolle in der Regulierung einnimmt, wie sich der Artenreichtum mit der Höhenlage verändert.»

Biodiversitätsmuster lassen sich durch Topografie erklären

Die Biodiversität wird häufig auf der Basis von idealisierten kegelförmigen Bergen untersucht, bei denen man davon ausgeht, dass in vergleichbaren Höhenlagen auch ähnliche Lebensräume zu finden sind. In diesen Modellen werden die Lebensräume mit zunehmender Höhe immer kleiner. Man geht davon aus, dass die Biodiversität am Fuss des Kegels am grössten ist und nach oben hin laufend abnimmt.

Das Forschungsteam hat einen aufwendigeren Forschungsansatz verfolgt. «Anstatt die Gebirgslandschaft auf eine perfekte Kegelform zu vereinfachten, wollten wir die Landschaft in ihrer vollen Komplexität berücksichtigen», betont Mitautor Florian Altermatt vom Institut für Evolutionsbiologie und Umweltwissenschaften der Universität Zürich.

Um ihre Annahme zu überprüfen, dass die Landschaftsstruktur selbst die Biodiversitätsmuster beeinflussen, haben die Wissenschaftler in einer Computersimulation zahlreiche virtuelle Arten in einer Gebirgslandschaft ausgesetzt. Jeder virtuellen Art wurde eine für ihre Verbreitung optimale Höhenlage zugewiesen und diese wurden einheitlich auf alle berücksichtigten Lagen verteilt.

Dann liessen die Forschenden die virtuellen Arten um Lebensräume in den Gebieten konkurrieren, die basierend auf realen Landschaften modelliert wurden. Die Simulationen haben die Annahme bestätigt: «Die in der Natur zu beobachtenden Biodiversitätsmuster lassen sich allein schon durch die jeweilige Topografie erklären. Andere Faktoren wie Temperatur, Produktivität etc. spielen ebenfalls eine wichtige Rolle, sie kommen einfach zusätzlich zum Effekt der Landschaftsstruktur zum Tragen», erläutert Altermatt.

Angesichts einer immer wärmer werdenden Welt sind diese Ergebnisse von spezieller Relevanz. Bertuzzo zieht folgenden Schluss: «Nur wenn wir den Zusammenhang zwischen Höhenlage und Biodiversität kennen, können wir die räumliche Neuverteilung der Arten infolge des Klimawandels vorhersagen. Steigen die Temperaturen, verschieben sich die Lebensräume von Tier- und Pflanzenarten in höhere Lagen. Eine bestimmte ökologische Gemeinschaft findet dort hinsichtlich Verfügbarkeit und Vernetzung ihres Lebensraums ganz andere topografische Gegebenheiten vor. Unsere Ergebnisse zeigen, wie wichtig es ist, diese Faktoren bei der Prognose künftiger Veränderungen zu berücksichtigen.»

Literatur:
Enrico Bertuzzo, Francesco Carrara, Lorenzo Maric, Florian Altermatt, Ignacio Rodriguez-Iturbe, and Andrea Rinaldoa. Geomorphic controls on elevational gradients of species richness. Proceedings of the National Academy of Sciences. February 1, 2016. doi: 10.1073/pnas.1518922113

Kontakte:
Prof. Florian Altermatt
Institut für Evolutionsbiologie und Umweltwissenschaften
Universität Zürich
Tel. +41 58 765 55 92
E-Mail: florian.altermatt@ieu.uzh.ch

Prof. Andrea Rinaldo
Labor für Ökohydrologie
ETH Lausanne
Tel. +41 21 693 80 34
Mobile +41 79 226 70 83
E-Mail: andrea.rinaldo@epfl.ch

http://www.mediadesk.uzh.ch/articles/2016/topografie-beeinflusst-biodiversitaet….

Media Contact

Kurt Bodenmüller Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Richtungsweisendes Molekül auf dem Weg in den Quantencomputer

Forschende der Universität Jena und Universität Florenz entwickeln Kobaltverbindung mit besonderen Quanten-Eigenschaften. In Quantencomputern werden keine elektrischen Schaltkreise ein- oder ausgeschaltet, sondern stattdessen quantenmechanische Zustände verändert. Dafür braucht es geeignete…

Neue kabellose Steuerungstechnologie …

… ermöglicht Einsatz intelligenter mobiler Assistenzroboter sogar in der Fließfertigung Robotikexperten des Fraunhofer IFF haben gemeinsam mit Partnern aus Industrie und Forschung neue Technologien entwickelt, mit denen intelligente mobile Assistenzroboter…

Die Mikroplastik-Belastung der Ostsee

Neue Ansätze für Monitoring und Reduktionsmaßnahmen Um die Belastung der Meere durch Mikroplastik zu erfassen, muss man dessen Menge und sein Verhalten kennen. Bislang ist dies nur unzureichend gegeben. Ein…

Partner & Förderer