Strömungsforschung in bis zu 250 Kilometern Höhe

Hier wird die Forschungsrakete mit dem BTU-Experiment in wenigen Tagen starten.
© Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Ein Experiment der BTU Cottbus-Senftenberg hebt am 26. Februar 2022 in einer Höhenforschungsrakete in Schweden ab. Ziel der Wissenschaftler um Prof. Christoph Egbers ist die Untersuchung des Wärme- und Stofftransports in einer Flüssigkeit unter Weltraumbedingungen. Mit den Erkenntnissen lassen sich beispielsweise Wärmetauscher in Kühlsystemen oder Satelliten optimieren.

Als eines von vier deutschen Teams beginnen die Wissenschaftler Dr. Martin Meier und Dr. Vasyl Motuz gemeinsam mit Prof. Dr.-Ing. Christoph Egbers am Sonntag, 13. Februar 2022, ihre Reise von Bremen nach Nordschweden, Kiruna. Dort begleiten die Forscher den Start einer Höhenforschungsrakete, die im Rahmen des Wissenschaftsprogramms TEXUS (Technologische Experimente unter Schwerelosigkeit) biologische, materialwissenschaftliche und physikalische Untersuchungen unter Weltraumbedingungen ermöglicht.

Blick auf die technischen Details des Experiments.
© BTU Cottbus – Senftenberg, Lehrstuhl Aerodynamik und Strömungslehre

An Bord ist neben drei weiteren Experimenten aus der physikalisch-chemischen und biologischen Forschung in diesem Jahr ein Modul des BTU-Projektes „TEKUS – thermoelektrische Konvektion unter Schwerelosigkeit“. Im Fokus des Vorhabens steht die thermische Konvektion in einer Zylinderspaltgeometrie unter dem Einfluss eines elektrischen Zentralkraftfeldes. Während die Untersuchungen auf der Erde durch schwerkraftgetriebene Strömungsbewegungen überlagert werden, können die Wissenschaftler die Effekte unter Schwerelosigkeit ohne diesen Einfluss beobachten und mit Computermodellen vergleichen.

Nach bisher 12 erfolgreichen Experimentkampagnen zur thermoelektrischen Konvektion im freien Fall bei Parabelflug-Missionen in Frankreich ist dies nun die erste Mission in einer Höhenflugrakete. Prof. Christoph Egbers, Inhaber des Lehrstuhls Aerodynamik und Strömungslehre an der BTU Cottbus-Senftenberg, ist stolz darauf und sagt: „Während des Raketenfluges können unsere thermoelektrischen Strömungsexperimente in einem etwa 18-fach längeren Zeitraum in annähernder Schwerelosigkeit stattfinden, als die Parabelflüge es ermöglichen. Damit erhöht sich die Qualität der Versuchsergebnisse deutlich. Die Möglichkeit, dass unser Experiment als eines von vier Versuchsaufbauten mitfliegt, ist für unsere Forschungen sehr bedeutend. Mit einer Kombination von zwei optischen Messtechniken, der Shadowgraph- und der Particle Image Velocimetry (PIV)-Messtechnik, können wir das Strömungsfeld sichtbar machen und charakterisieren.“

Über das Experiment

Im Rahmen des Projektes „TEKUS“ wird der Einfluss eines elektrohydrodynamischen Kraftfeldes auf den Wärme- und Stofftransport in einem Zylinderspalt untersucht. Der Zylinderspalt entsteht zwischen zwei ineinander gestellten, senkrechten Rohren und ist oben und unten durch Deckel- und Bodenplatte begrenzt. Der Spalt ist mit einem elektrisch nichtleitenden Öl gefüllt. Während das innere Rohr beheizt wird, wird das äußere Rohr von außen gekühlt. Der Temperaturunterschied führt zu einer Grundströmung. Erhöht sich der Temperaturunterschied, nimmt die Grundströmung neue Formen an, der Wärmetransport zwischen Innen- und Außenrohr ist verstärkt. Wenn auf dieses System nun ein Kraftfeld in Form einer angelegten Wechselspannung wirkt, entsteht eine elektrohydro-dynamische Kraftwirkung. Unter Erdbedingungen stört dieses künstliche Kraftfeld die Stabilität der Auftriebsströmung und kann den Wärmetransport verstärken.

Unter Mikrogravitationsbedingungen, wie sie beispielsweise im Parabelflug auftreten, wird die Auftriebsströmung jedoch vernachlässigbar klein. Das durch die Hochspannung aufgebaute Kraftfeld ist dann allein ausschlaggebend für das Entstehen von Strömungen im Zylinderspalt, die vielfältige Formen bis zu turbulenten Strömungen annehmen können. Diese Strömungsformen – und damit auch der Wärmetransport zwischen Innen- und Außenrohr – können mit der Höhe der elektrischen Spannung kontrolliert werden.

Pressekontakt
Dr. phil. Marita Müller
Stabsstelle Kommunikation und Marketing
T +49 (0) 355 69-3206
marita.mueller(at)b-tu.de

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Christoph Egbers
Aerodynamik und Strömungslehre
T +49 (0) 355 69-4868
christoph.egbers(at)b-tu.de

Weitere Informationen:

https://www.b-tu.de/news/artikel/19736-stroemungsforschung-in-bis-zu-250-kilomet… – Pressemitteilung der BTU Cottbus-Senftenberg mit weiteren Informationen
https://www.b-tu.de/fg-aerodynamik-stroemungslehre/forschung/schwerpunkte/raumfa… – Weitere Informationen zum Projekt
https://www.dlr.de/rd/desktopdefault.aspx/tabid-2282/3421_read-5228/ – Weitere Informationen zu TEXUS

Media Contact

Ralf-Peter Witzmann Stabsstelle Kommunikation und Marketing
Brandenburgische Technische Universität Cottbus-Senftenberg

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer