Starkes Beben, kleiner Tsunami

For a total of two years, 15 ocean bottom seismometers off northern Chile recorded aftershocks from the 2014 Iquique earthquake.
Credit: Jan Steffen/GEOMAR

Die energiereichsten Erdbeben entstehen dort, wo ozeanische Erdplatten unter Kontinentalplatten abtauchen. Beben an solchen Subduktionszonen bergen immer die Gefahr, dass sie schwere Tsunamis auslösen. Doch als am 1. April 2014 die Erde bei der nordchilenischen Stadt Iquique mit einer Momentenmagnitude von 8,1 bebte, blieb der Tsunami verhältnismäßig klein. Ein einzigartiger seismologischer Datensatz, den Forscher*innen des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel jetzt in der internationalen Fachzeitschrift Geophysical Research Letters veröffentlichen, liefert eine mögliche Erklärung dafür.

Wer die Entstehung von Erdbeben besser verstehen will, für den ist Nordchile ein ideales Untersuchungsgebiet. Mit einer Geschwindigkeit von etwa 65 Millimetern pro Jahr schiebt sich in der dortigen Subduktionszone die pazifische Nazca-Platte unter die Südamerikanische Kontinentalplatte. Dabei entstehen Spannungen zwischen beiden Platten. Geowissenschaftler*innen erwarteten früher oder später ein Megabeben wie zuletzt 1877. Doch obwohl Nordchile zu den Schwerpunkten der globalen Erdbebenforschung zählt, gab es bislang keinen umfassenden Datensatz zum Aufbau des Untergrundes. Bis die Natur selbst zur Hilfe kam.

Am 1. April 2014 brach nordwestlich der Stadt Iquique schließlich doch ein Segment der Subduktionszone. Das Erdbeben mit der Momentenmagnitude von 8,1 setzte zumindest Teile der aufgebauten Spannungen frei. Anschließende seismische Messungen vor der Küste Chiles sowie Meeresbodenkartierungen und landbasierte Daten lieferten einen bislang einzigartigen Einblick in die Struktur der Erdplatten. „Damit können wir unter anderem erklären, warum ein verhältnismäßig schweres Beben wie das von 2014 nur einen verhältnismäßig schwachen Tsunami auslöste“, sagt Florian Petersen vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. Er ist Erstautor der Studie, die jetzt in der Fachzeitschrift Geophysical Research Letters erschienen ist.

Schon im Dezember 2014, also nur acht Monate nach dem Hauptbeben, setzte das Kieler Team 15 speziell für die Tiefsee entwickelte seismische Messgeräte vor der Küste Chiles aus. „Die logistischen und auch administrativen Hürden für den Einsatz dieser Ozeanbodenseismometer sind groß und acht Monate Vorbereitungszeit sehr knapp. Da die Untersuchungen aber essentiell sind, um das Gefährdungspotential des Plattenrandes vor Nordchile besser zu verstehen, hat uns schließlich sogar die chilenische Marine unterstützt, indem sie uns ihr Patrouillenboot COMANDANTE TORO zur Verfügung gestellt hat“, berichtet der Projektleiter und Co-Autor Dr. Dietrich Lange vom GEOMAR.

Ende 2015 wurden diese Ozeanbodenseismometer (OBS) mit dem deutschen Forschungsschiff SONNE geborgen. Das Team an Bord wartete die Geräte, las die Daten aus und platzierte die OBS erneut am Meeresboden. Erst im November 2016 holte sie das amerikanische Forschungsschiff MARCUS G. LANGSETH endgültig wieder ab. „Zusammen mit Daten von Land haben wir einen seismischen Datensatz der Erdbebenregion über 24 Monate hinweg erhalten, in dem wir die Signale zahlreicher Nachbeben nutzen können. Das ist bislang einzigartig“, erklärt Florian Petersen, für den die Studie ein Teil seiner Doktorarbeit ist.

Die Auswertung der Langzeitmessungen, an der auch Kolleg*innen der Universidad de Chile und der Oregon State University (USA) beteiligt waren, zeigten, dass unerwartet viele Nachbeben zwischen der eigentlichem Erdbeben-Bruchzone und dem Tiefseegraben lagen. „Was uns aber noch mehr überrascht hat war, dass viele Nachbeben recht flach waren. Sie haben sich in der oben liegenden südamerikanischen Kontinentalplatte und nicht entlang der Plattengrenze der abtauchenden Nazca-Platte ereignet“, sagt Petersen.

Über viele Erdbebenzyklen hinweg können diese Nachbeben den seewärtigen Rand der Kontinentalplatte stark stören und aufbrechen. Entstehende Zwischenräume füllen sich mit Porenflüssigkeiten. Dadurch, so die Schlussfolgerung der Autor*innen, kann sich die Energie der Beben nur nach unten, nicht aber zum Tiefseegraben vor der Küste Chiles ausbreiten. „Daher kam es beim Erdbeben 2014 nicht zu großen, kurzfristigen Verschiebungen und der Tsunami fiel glücklicherweise klein aus“, sagt Florian Petersen.

Offen bleibt noch die Frage, ob das Iquique-Erdbeben von 2014 schon das erwartete große Beben in der Region war oder ob es wirklich nur einen Teil der seit 1877 aufgebauten Spannungen gelöst hat. „Die Region bleibt weiterhin sehr spannend für uns. Die jetzigen Ergebnisse waren nur möglich durch die enge Zusammenarbeit mehrerer Nationen und den Forschungseinsatz von Schiffen aus Deutschland, Chile und den USA. Das zeigt den Aufwand, der für Meeresforschung zu marinen Naturgefahren nötig ist. Für eine detaillierte Abschätzung des Risikos der Küstenstädte in Nordchile ist dies aber unerlässlich, so dass alle hier an einem Strang gezogen haben“, sagt Co-Autorin Prof. Dr. Heidrun Kopp vom GEOMAR.

Originalpublikation:

Petersen, F., D. Lange, B. Ma, I. Grevemeyer, J. Geersen, D. Klaeschen, E. Contreras-Reyes, S. Barrientos, A. M. Tréhu, E. Vera, and H. Kopp (2021): Relationship Between Subduction Erosion and the Up-Dip Limit of the 2014 Mw 8.1 Iquique Earthquake. Geophysical Research Letters, https://doi.org/10.1029/2020GL092207

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.geomar.de/forschen/fb4/fb4-gdy/projekte/seco Projektseite zur Studie
http://www.oceanblogs.org/oceannavigator/2015/12/08/so244-geosea-nachtschicht-mi… Blogeintrag zum OBS-Einsatz während der SONNE-Expedition SO244 Ende 2015

Media Contact

Dr. Andreas Villwock Kommunikation und Medien
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Wann Erdbeben Vulkanausbrüche auslösen

Neue Klassifizierung von Vulkanen identifiziert Schlüsselmechanismen für Ausbrüche und die Beeinflussung durch Erdbeben und hilft bei künftigen Überwachungsstrategien. Vulkanausbrüche können von Erdbeben ausgelöst werden. Allerdings ist dies vergleichsweise selten der…

Neue Gliazellen im Gehirn entdeckt

Möglicher Hinweis für Gehirnreparatur… Neuronen sind Nervenzellen im Gehirn, die zentral für die Gehirnfunktion sind. Neuste Forschung lässt jedoch vermuten, dass auch Gliazellen, die lange Zeit als Stützzellen galten, eine…

Was bei Alzheimer in den Hirnzellen passiert

Neben Plaques, die sich außerhalb von Nervenzellen im Gehirn sammeln, zeichnet sich die Alzheimer-Erkrankung auch durch Veränderungen innerhalb dieser Zellen aus. Was genau sich dort abspielt, haben Forschende aus der…

Partner & Förderer