Wie kommt das Salz in den märkischen Boden?

Die Abbildung zeigt die Salzkonzentration des Wassers im Untergrund, wie sie die Simulation am WIAS ergeben hat. Abb.: WIAS

Aufquellendes Salzwasser könnte womöglich zum Problem für die Wasserversorgung der Region Berlin-Brandenburg werden. Mathematiker des Weierstraß-Instituts für Angewandte Analysis und Stochastik modellieren zusammen mit Kooperationspartnern die Grundwasserströme, um herauszufinden, was das Wasser an die Oberfläche treibt.


Salzwasserquellen gibt es im Umland von Berlin dutzendweise. In deren Umgebung wachsen Blumen, die sonst nur in Küstennähe vorkommen, zum Beispiel der Stranddreizack. Geowissenschaftler, Wasserexperten und Mathematiker interessieren sich seit langem für dieses Phänomen – nicht etwa der exotischen Blumen wegen, sondern weil davon die Wasserversorgung der Metropolenregion betroffen sein könnte.

Berlin bezieht einen großen Teil seines Trinkwassers aus Brunnen, die versickertes Oberflächenwasser fördern. Die Wasserbetriebe und die zuständigen Behörden haben ein großes Interesse daran, dass kein salziges Tiefenwasser die Trinkwasserbrunnen kontaminiert. Eigentlich ist das Trinkwasser im Untergrund Berlins gut geschützt: Eine Tonschicht, der Rupelton, sperrt tiefer liegende „Stockwerke“ ab, und außerdem ist Salzwasser schwerer als Süßwasser. Wieso aber gibt es dann solche salzigen Quellen, beispielsweise bei Storkow? Anders gefragt: Was treibt das schwerere Wasser aus der Tiefe?

Mathematiker aus dem Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) haben – gefördert von der DFG – zusammen mit Wissenschaftlern des Geoforschungszentrums Potsdam, der Freien Universität Berlin und der BTU Cottbus eine mögliche Antwort darauf gefunden. Demnach erhitzt die Wärme aus dem Erdinneren das Salzwasser und verursacht Konvektionsströme, ähnlich wie in einem Suppentopf, wo heißes Wasser aufwallt. Bereits vor einigen Jahren hatten Mathematiker um Jürgen Fuhrmann vom WIAS festgestellt, das thermale Konvektionsströme im hiesigen Untergrund prinzipiell möglich sind (vergleiche auch Verbundjournal Nr. 52, Dezember 2002).

Das mathematische Modell hatte damals jedoch noch nicht das im Wasser gelöste Salz berücksichtigt. Mittlerweile haben die Forscher diesen Parameter jedoch integriert und weitere Arbeiten durchgeführt, zum Beispiel das aufsteigende Wasser chemisch analysiert und mit Hilfe des Programmpakets FEFLOW der WASY GmbH ein ein weiteres Modell entworfen. Rechnungen und Vergleiche mit beiden Modellen zeigen, dass der Temperaturgradient im Untergrund stark genug ist, um das schwerere Salzwasser über Konvektionsströme nach oben zu reißen. Da zudem bekannt ist, dass eiszeitliche Gletscher an manchen Stellen den Rupelton weggeschürft haben, ist nun klar, wieso das Wasser nach oben quellen kann. „In weiteren Forschungen geht es darum, die extrem dünne Rupeltonschicht in die Modelle zu integrieren“, kündigt Jürgen Fuhrmann an.

Weitere Informationen
Weierstraß-Institut für Angewandte Analysis und Stochastik
Dr. Jürgen Fuhrmann
Tel.: 030 / 2 03 72-560
Mail: fuhrmann@wias-berlin.de

Ansprechpartner für Medien

Josef Zens idw

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Niedertemperaturplasmen: Die maßgeschneiderte Welle

Plasmen werden in der Industrie zum Beispiel eingesetzt, um Oberflächen gezielt zu verändern, etwa Brillengläser oder Displays zu beschichten oder mikroskopische Kanäle in Siliziumwafer zu ätzen – eine Milliarden-Dollar-Industrie. Allerdings…

Innovationen durch haarfeine optische Fasern

Wissenschaftler der Universität Bonn haben auf ganz einfache Weise haarfeine, optische Faser-Filter gebaut. Sie sind nicht nur extrem kompakt und stabil, sondern auch noch in der Farbe abstimmbar. Damit lassen…

So schlank werden die Häuser der Zukunft

Ingenieurinnen und Ingenieure der HTWK Leipzig erforschen neue Materialien, um Gebäude nachhaltiger zu machen und Ressourcen zu sparen In der Einsteinstraße in Dresden entsteht aktuell ein Haus, das einen Einblick…

Partner & Förderer

Indem Sie die Website weiterhin nutzen, stimmen Sie der Verwendung von Cookies zu. mehr Informationen

Die Cookie-Einstellungen auf dieser Website sind so eingestellt, dass sie "Cookies zulassen", um Ihnen das bestmögliche Surferlebnis zu bieten. Wenn Sie diese Website weiterhin nutzen, ohne Ihre Cookie-Einstellungen zu ändern, oder wenn Sie unten auf "Akzeptieren" klicken, erklären Sie sich damit einverstanden.

schließen