Kometenstaub auf dem Weg nach Mainz

Sauerstoff-Isotopenzusammensetzung in einem Gebiet von 9 x 9 Quadratmikrometern im Acfer 094-Meteoriten. Der Sternenstaub zeigt eine markante Erhöhung des sehr seltenen Isotops mit der Massenzahl 17. © Max-Planck-Institut für Chemie

Auch am Mainzer Max-Planck-Institut für Chemie wurde die erfolgreiche Landung des „Stardust“-Staubkollektors mit Erleichterung und großer Begeisterung aufgenommen, wird doch die Forschungsgruppe von Dr. Peter Hoppe maßgeblich an den Untersuchungen der Proben vom Kometen „Wild 2“ beteiligt sein. Ziel der Mainzer Forscher ist es, mithilfe ihrer Ionenmikrosonde Sternenstaub im Kometenmaterial zu identifizieren. Sternenstaub war ein wichtiger Bestandteil des solaren Nebels, aus dem unser Sonnensystem vor etwa 4,6 Milliarden Jahren entstanden ist.

Am 15. Januar war es endlich soweit: Nach fast siebenjähriger Reise, bei der die Raumsonde „Stardust“ mehr als 4 Milliarden Kilometer durch unser Sonnensystem zurückgelegt hat, konnte die wertvolle Fracht über der Wüste im US-Bundesstaat Utah abgeworfen werden. Höhepunkt dieser Reise war das Rendezvous mit dem Kometen „Wild 2“ im Januar 2004. Der Durchgang der Raumsonde durch den Schweif erfolgte in einem Abstand zum Kometen von etwa 240 Kilometern, wobei Tausende, wenn nicht Hunderttausende von Staubpartikeln eingefangen werden konnten. Neben dem Kometenmaterial sammelte „Stardust“ im Verlaufe der langen Reise durch den weitestgehend leeren interplanetaren Raum auch interstellaren Staub. Aufgrund der sehr geringen Partikeldichte im interplanetaren Raum geht man aber davon aus, dass nur sehr wenige interstellare Teilchen mit einer Größe von mehr als einem Tausendstel Millimeter eingefangen werden konnten.

In einer ersten, etwa sechs Monate dauernden Phase wird ein internationales Expertenteam eine erste Charakterisierung des Kometenmaterials vornehmen. Das Expertenteam besteht aus sechs Arbeitsgruppen, die sich den Bereichen Mineralogie/Petrographie, chemische Zusammensetzung, optische Eigenschaften, Isotopen, organische Materie und Einschlagskratern widmen werden. Teil dieses Teams ist die Forschungsgruppe von Dr. Peter Hoppe aus der Abteilung Partikelchemie des Mainzer Max-Planck-Instituts für Chemie. Wenn alles wie geplant läuft, so sollten die ersten Kometenproben Ende Januar auf die Reise nach Mainz gehen. Für Peter Hoppe, einen Schüler des Schweizer Astronomen Paul Wild, dem Entdecker des Kometen „Wild 2“, bedeutet dies einen Höhepunkt in der Sternenstaubforschung, die er seit vielen Jahren betreibt. Bis jetzt war man bei den Untersuchungen von Sternenstaub auf Meteorite beschränkt, die diese Relikte ferner, verstorbener Sterne in sehr geringen Mengen enthalten. Kometen repräsentieren das ursprünglichste Material in unserem Sonnensystem. Entsprechend groß ist die Hoffnung, in den „Stardust“-Proben deutlich größere Mengen an Sternenstaub wie auch bis jetzt noch nicht identifizierte Sternenstaubminerale zu finden, um damit ein wesentlich detailliertes Bild von der Entstehungsgeschichte unseres Sonnensystems zu zeichnen.

Als Werkzeug für ihre Untersuchungen stehen den Mainzer Forschern ein hochauflösendes Elektronenmikroskop sowie eine NanoSIMS-Ionenmikrosonde zur Verfügung. Die NanoSIMS ist ein so genanntes Sekundärionenmassenspektrometer und repräsentiert die Schlüsseltechnologie zum Auffinden des häufig nur 100 Millionstel Millimeter großen Sternenstaubs, lässt sich dieser doch anhand spezifischer Isotopenhäufigkeitsanomalien aufspüren (Abb. 1). In den vergangenen Monaten haben die Max-Planck-Forscher in Zusammenarbeit mit Wissenschaftlern der NASA und der Universität Kalifornien in Berkeley umfangreiche Testmessungen durchgeführt. Mit der NanoSIMS-Ionenmikrosonde untersuchten sie dabei Partikel des Allende-Meteoriten, die mit einer Geschwindigkeit von 6,1 km/s in Aluminumfolien und Aerogel – den beiden bei „Stardust“ verwendeten Targets – geschossen wurden (Abb. 2). „Wir sind bereit“, so Hoppe, „und hoffen, mit unserer NanoSIMS dem Sternenstaub weitere Geheimnisse zu entlocken.“

Weitere Informationen erhalten sie von:

Dr. Peter Hoppe
Max-Planck-Institut für Chemie, Mainz
Tel.: 06131 305-244/231
E-Mail: hoppe@mpch-mainz.mpg.de

Media Contact

Dr. Wolfgang Huisl idw

Weitere Informationen:

http://www.mpch-mainz.mpg.de/

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Eine der weltgrößten Datenbanken zur Ganganalyse

Die vor kurzem veröffentlichte Gutenberg Gang-Datenbank ist die weltweit größte Sammlung von Ganganalysen gesunder Proband*innen Sie bietet Vergleichsdaten für die Diagnose und Behandlung von Gangstörungen. Erstellt haben die Datenbank die…

In nur wenigen Minuten Zellstrukturen dreidimensional abbilden

Heidelberger Wissenschaftler arbeiten an einem schnellen Verfahren der 3D-Zellbildgebung. Virale Erreger wie das Coronavirus SARS-CoV-2 verändern die innere Struktur der Zellen, die sie befallen. Diese Veränderungen finden auf Ebene der…

Projekt ALBATROS: Aluminium-Ionen-Batterien als alternative Speichertechnologie

… für stationäre Anwendungen. Im Projekt ALBATROS entwickelt ein Konsortium aus Forschung und Industrie die Aluminium-Ionen-Batterie (AIB) weiter. Dabei stehen die Abläufe in der Batteriezelle und an den Grenzflächen zwischen…

Partner & Förderer