Unerwartete Kohlenstoff-Zusammensetzung in ältesten Diamanten der Welt

Eine Gruppe von Forschern, darunter Martina Menneken und Dr. Thorsten Geisler von der Universität Münster, hat bei der Untersuchung der ältesten Diamanten der Welt einen Hinweis auf die mögliche Existenz von Leben vor 4,25 Milliarden Jahren erhalten.

Bislang gehen Wissenschaftler davon aus, dass die ersten lebenden Zellen vor etwa 3,5 Milliarden Jahren entstanden sind. Die renommierte Fachzeitschrift Nature hat die Ergebnisse in ihrer aktuellen Ausgabe vom 3. Juli 2008 veröffentlicht.

Mit der Entdeckung der ältesten Diamanten der Welt hatten Martina Menneken und ihre Kollegen bereits im Jahr 2007 für Schlagzeilen gesorgt. Ein Team aus australischen, schwedischen und den münsterschen Wissenschaftlern vom Institut für Mineralogie hat die Diamant- und Grafiteinschlüsse in den nur wenige Mikrometer großen, bis zu 4,25 Milliarden Jahre alten Zirkonen aus Westaustralien inzwischen weiter untersucht. Die Forscher haben dabei einen zum Teil unerwartet niedrigen Gehalt an dem schweren Kohlenstoffisotop C-13 gefunden. Geringe Anteile an diesem Isotop sind typisch für Kohlenstoff, der aus organischem Material stammt.

Das Verhältnis verschiedener Kohlenstoffisotope (C-12 zu C-13) in den Einschlüssen haben die Wissenschaftler mit Hilfe eines Sekundärionen-Massenspektrometers gemessen, um Informationen über die Herkunft des Kohlenstoffs und die Entstehung der Diamant- und Grafiteinschlüsse zu bekommen. Die gemessen Isotopenverhältnisse reichen von für den Erdmantel typischen Werten bis hin zu Werten, die durch einen extrem geringen Anteil an dem schweren Isotop C-13 gekennzeichnet sind.

„Die Zusammensetzung der Kohlenstoffisotope ist ein Hinweis darauf, dass bereits vor 4,25 Milliarden Jahren Leben existiert haben könnte“, so Martina Menneken. Allerdings können auch abiogene chemische Reaktionen niedrige Anteile an schwerem Kohlenstoff erzeugen. Sicher ist, dass bereits sehr früh nach der Entstehung der Erde vor 4,56 Milliarden Jahren ein Kohlenstoffreservoir mit extrem niedrigen C-13-Anteilen auf der Erde existiert haben muss.

„Unsere Daten sind kein Beweis für die Existenz von Leben vor 4,25 Milliarden Jahren“, sagt Menneken, „doch sie werfen die Frage auf, wie diese unerwartete Kohlenstoff-Zusammensetzung zustande gekommen ist.“ Das Vorhandensein lebender Organismen ist eine mögliche Erklärung. Sollte sie sich bewahrheiten, müsste die Geschichte des Lebens umgeschrieben werden.

Literatur: Nemchin et al. (2008): A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454, 92-95

Weitere Informationen:
http://www.uni-muenster.de/Mineralogie/ Institut für Mineralogie / WWU
http://www.nature.com/nature/journal/v454/n7200/full/nature07102.html Nature-Artikel (Nature 454, 92-95)

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer